Skip to main content

Uncertainty Measurements for the Reliable Classification of Mammograms

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

We propose an efficient approach to estimate the uncertainty of deep-neural network classifiers based on the tradeoff of two measurements. The first based on subjective logic and the evidence of soft-max predictions and the second, based the Mahalanobis distance between new and training samples in the embedding space. These measurements require neither modifying, nor retraining, nor multiple testing of the models. We evaluate our methods on different classification tasks including breast cancer risk, breast density, and patch-wise tissue type and considering both an in-house database of 1600 mammographies, as well as on the public INBreast dataset. Throughout the experiments, we show the ability of our method to reject the most evident outliers, and to offer AUC gains of up to 10%, when keeping 60% of most certain samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Model and patches from the \(TissueCLS_{raw}\) experiment described in Sect. 3.

References

  1. Bragman, F.J.S., et al.: Uncertainty in multitask learning: joint representations for probabilistic MR-only radiotherapy planning. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_1

    Chapter  Google Scholar 

  2. Denouden, T., Salay, R., Czarnecki, K., Abdelzad, V., Phan, B., Vernekar, S.: Improving reconstruction autoencoder out-of-distribution detection with mahalanobis distance. CoRR abs/1812.02765 (2018)

    Google Scholar 

  3. Eaton-Rosen, Z., Bragman, F., Bisdas, S., Ourselin, S., Cardoso, M.J.: Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network predictions. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 691–699. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_78

    Chapter  Google Scholar 

  4. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  5. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. CoRR abs/1610.02136 (2016)

    Google Scholar 

  6. Jøsang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty. Springer (2018, Incorporated)

    Google Scholar 

  7. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 5574–5584. Curran Associates, Inc. (2017)

    Google Scholar 

  8. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 7167–7177. Curran Associates, Inc. (2018)

    Google Scholar 

  9. Leibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 17816 (2017)

    Article  Google Scholar 

  10. Liang, S., Li, Y., Srikant, R.: Principled detection of out-of-distribution examples in neural networks. CoRR abs/1706.02690 (2017)

    Google Scholar 

  11. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 7047–7058. Curran Associates, Inc. (2018)

    Google Scholar 

  12. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  Google Scholar 

  13. Nair, T., Precup, D., Arnold, D.L., Arbel, T.: Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2018, pp. 655–663. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_74

    Chapter  Google Scholar 

  14. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8(1), 4165 (2018)

    Article  Google Scholar 

  15. Sensoy, M., Kaplan, L., Kandemir, M.: Evidential deep learning to quantify classification uncertainty. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 3183–3193. Curran Associates, Inc. (2018)

    Google Scholar 

  16. Shen, L.: End-to-end training for whole image breast cancer diagnosis using an all convolutional design. arXiv preprint arXiv:1708.09427, November 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickael Tardy .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4373 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tardy, M., Scheffer, B., Mateus, D. (2019). Uncertainty Measurements for the Reliable Classification of Mammograms. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11769. Springer, Cham. https://doi.org/10.1007/978-3-030-32226-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32226-7_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32225-0

  • Online ISBN: 978-3-030-32226-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics