Skip to main content

Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11769))

Abstract

Current deep neural network based approaches to computed tomography (CT) metal artifact reduction (MAR) are supervised methods which rely heavily on synthesized data for training. However, as synthesized data may not perfectly simulate the underlying physical mechanisms of CT imaging, the supervised methods often generalize poorly to clinical applications. To address this problem, we propose, to the best of our knowledge, the first unsupervised learning approach to MAR. Specifically, we introduce a novel artifact disentanglement network that enables different forms of generations and regularizations between the artifact-affected and artifact-free image domains to support unsupervised learning. Extensive experiments show that our method significantly outperforms the existing unsupervised models for image-to-image translation problems, and achieves comparable performance to existing supervised models on a synthesized dataset. When applied to clinical datasets, our method achieves considerable improvements over the supervised models. The source code of this paper is publicly available at https://github.com/liaohaofu/adn.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    spineweb.digitalimaginggroup.ca.

  2. 2.

    github.com/milesial/Pytorch-UNet.

  3. 3.

    pytorch.org.

References

  1. Gjesteby, L., et al.: Metal artifact reduction in CT: where are we after four decades? IEEE Access 4, 5826–5849 (2016)

    Article  Google Scholar 

  2. Gjesteby, L., et al.: Deep neural network for CT metal artifact reduction with a perceptual loss function. In: Proceedings of the Fifth International Conference on Image Formation in X-Ray Computed Tomography (2018)

    Google Scholar 

  3. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)

    Google Scholar 

  4. Huang, X., Wang, J., Tang, F., Zhong, T., Zhang, Y.: Metal artifact reduction on cervical CT images by deep residual learning. Biomed. Eng. Online 17(1), 175 (2018)

    Article  Google Scholar 

  5. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  6. Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3

    Chapter  Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Deep image prior. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  9. Wang, J., Zhao, Y., Noble, J.H., Dawant, B.M.: Conditional generative adversarial networks for metal artifact reduction in CT images of the ear. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_1

    Chapter  Google Scholar 

  10. Yan, K., Wang, X., Lu, L., Summers, R.M.: DeepLesion: automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J. Med. Imaging (2018)

    Google Scholar 

  11. Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)

    Article  Google Scholar 

  12. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  13. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR abs/1703.10593 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by NSF award #1722847 and the Morris K. Udall Center of Excellence in Parkinson’s Disease Research by NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haofu Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, H., Lin, WA., Yuan, J., Zhou, S.K., Luo, J. (2019). Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11769. Springer, Cham. https://doi.org/10.1007/978-3-030-32226-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32226-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32225-0

  • Online ISBN: 978-3-030-32226-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics