Skip to main content

Metric Embedding into the Hamming Space with the n-Simplex Projection

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11807))

Included in the following conference series:

Abstract

Transformations of data objects into the Hamming space are often exploited to speed-up the similarity search in metric spaces. Techniques applicable in generic metric spaces require expensive learning, e.g., selection of pivoting objects. However, when searching in common Euclidean space, the best performance is usually achieved by transformations specifically designed for this space. We propose a novel transformation technique that provides a good trade-off between the applicability and the quality of the space approximation. It uses the n-Simplex projection to transform metric objects into a low-dimensional Euclidean space, and then transform this space to the Hamming space. We compare our approach theoretically and experimentally with several techniques of the metric embedding into the Hamming space. We focus on the applicability, learning cost, and the quality of search space approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The proof is made trivially by a selection of all objects from the data set \(S\) as pivots.

  2. 2.

    http://www.nmis.isti.cnr.it/falchi/SISAP19SM.pdf.

  3. 3.

    http://disa.fi.muni.cz/profiset/.

  4. 4.

    http://corpus-texmex.irisa.fr/.

References

  1. Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable approximate similarity search. Multimed. Tools Appl. 71(3), 1333–1362 (2014)

    Article  Google Scholar 

  2. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Proceedings of the ACM-CIVR 2010, pp. 438–445. ACM (2010)

    Google Scholar 

  3. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Clarendon Press, Oxford (1953)

    MATH  Google Scholar 

  4. Cao, Y., et al.: Binary hashing for approximate nearest neighbor search on big data: a survey. IEEE Access 6, 2039–2054 (2018)

    Article  Google Scholar 

  5. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proceedings of ACM-STOC 2002. ACM (2002)

    Google Scholar 

  6. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)

    Article  Google Scholar 

  7. Connor, R., Cardillo, F.A., Vadicamo, L., Rabitti, F.: Hilbert exclusion: improved metric search through finite isometric embeddings. ACM Trans. Inf. Syst. 35(3), 17:1–17:27 (2016)

    Article  Google Scholar 

  8. Connor, R., Vadicamo, L., Cardillo, F.A., Rabitti, F.: Supermetric search. Inf. Syst. 80, 108–123 (2018)

    Article  Google Scholar 

  9. Connor, R., Vadicamo, L., Rabitti, F.: High-dimensional simplexes for supermetric search. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) SISAP 2017. LNCS, vol. 10609, pp. 96–109. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-68474-1_7

    Chapter  Google Scholar 

  10. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: Proceedings of ICML 2014, vol. 32, pp. 647–655 (2014)

    Google Scholar 

  11. Douze, M., Jégou, H., Perronnin, F.: Polysemous codes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 785–801. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_48

    Chapter  Google Scholar 

  12. Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2916–2929 (2013)

    Article  Google Scholar 

  13. Gordo, A., Perronnin, F., Gong, Y., Lazebnik, S.: Asymmetric distances for binary embeddings. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 33–47 (2014)

    Article  Google Scholar 

  14. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of ACM STOC, pp. 604–613 (1998)

    Google Scholar 

  15. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: Proceedings of CVPR 2010, pp. 3304–3311. IEEE (2010)

    Google Scholar 

  16. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)

    Article  MathSciNet  Google Scholar 

  17. Mic, V., Novak, D., Vadicamo, L., Zezula, P.: Selecting sketches for similarity search. In: Proceedings of ADBIS, pp. 127–141 (2018)

    Chapter  Google Scholar 

  18. Mic, V., Novak, D., Zezula, P.: Designing sketches for similarity filtering. In: Proceedings of IEEE ICDM Workshops, pp. 655–662 (2016)

    Google Scholar 

  19. Mic, V., Novak, D., Zezula, P.: Binary sketches for secondary filtering. ACM Trans. Inf. Syst. 37(1), 1:1–1:28 (2018)

    Article  Google Scholar 

  20. Novak, D., Zezula, P.: PPP-codes for large-scale similarity searching. In: Hameurlain, A., Küng, J., Wagner, R., Decker, H., Lhotska, L., Link, S. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXIV. LNCS, vol. 9510, pp. 61–87. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49214-7_2

    Chapter  Google Scholar 

  21. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach, vol. 32. Springer, New York (2006). https://doi.org/10.1007/0-387-29151-2

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The work was partially supported by VISECH ARCO-CNR, CUP B56J17001330004, and AI4EU project, funded by the EC (H2020 - Contract n. 825619). This research was supported by ERDF “CyberSecurity, CyberCrime and Critical Information Infrastructures Center of Excellence” (No. CZ.02.1.01/0.0/0.0/ 16_019/0000822).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Vadicamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vadicamo, L., Mic, V., Falchi, F., Zezula, P. (2019). Metric Embedding into the Hamming Space with the n-Simplex Projection. In: Amato, G., Gennaro, C., Oria, V., Radovanović , M. (eds) Similarity Search and Applications. SISAP 2019. Lecture Notes in Computer Science(), vol 11807. Springer, Cham. https://doi.org/10.1007/978-3-030-32047-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32047-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32046-1

  • Online ISBN: 978-3-030-32047-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics