Skip to main content

SMCS: Mobile Model Oriented to Cloud for the Automatic Classification of Environmental Sounds

  • Conference paper
  • First Online:
Advances in Emerging Trends and Technologies (ICAETT 2019)

Abstract

This paper presents SMCS, a cloud-oriented mobile system model that uses a Convolutional Neural Network for the automatic classification of environmental sounds in real time. The model comprises an architectural schema with its corresponding deployment scheme in Google cloud services provider. Finally, the validation protocol of SMCS is applied in two experiments using respectively the base of free sounds FSDkaggle2018 and a selection of warning sounds extracted from the same sound base. The results of the validation of the model are promising with high values of precision in the classification of sounds, demonstrating that the SMCS model is expected to be a point of reference for the development of sound analysis systems, contributing to improving the quality of life of people with Hearing Impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vejarano, R., Alain, L.: Alternativas tecnológicas para mejorar la comunicación de personas con discapacidad auditiva en la educación superior panameña. Rev. Educ. la Univ. Granada 23, 219–235 (2016)

    Google Scholar 

  2. Noor, T.H., Zeadally, S., Alfazi, A., Sheng, Q.Z.: Mobile cloud computing: Challenges and future research directions. J. Netw. Comput. Appl. 115, 70–85 (2018). https://doi.org/10.1016/j.jnca.2018.04.018

    Article  Google Scholar 

  3. Nanjundaswamy, M., Prabhu, P., Rajanna, R.K., et al.: Computer-based auditory training programs for children with HEARING impairment – a scoping review. Int. Arch. Otorhinolaryngol. 22, 88–93 (2018). https://doi.org/10.1055/s-0037-1602797

    Article  Google Scholar 

  4. Lay, Y.-L., Tsai, C.-H., Yang, H.-J., et al.: The application of extension neuro-network on computer-assisted lip-reading recognition for hearing impaired. Expert Syst. Appl. 34, 1465–1473 (2008). https://doi.org/10.1016/j.eswa.2007.01.042

    Article  Google Scholar 

  5. Chen, L., Tsai, C., Chang, W., et al.: A real-time mobile emergency assistance system for helping deaf-mute people/elderly singletons. In: 2016 IEEE International Conference on Consumer Electronics (ICCE), pp 45–46 (2016)

    Google Scholar 

  6. Jiang, J., Bu, L., Duan, F., et al.: Whistle detection and classification for whales based on convolutional neural networks. Appl. Acoust. 150, 169–178 (2019). https://doi.org/10.1016/j.apacoust.2019.02.007

    Article  Google Scholar 

  7. Bardou, D., Zhang, K., Ahmad, S.M.: Lung sounds classification using convolutional neural networks. Artif. Intell. Med. 88, 58–69 (2018). https://doi.org/10.1016/j.artmed.2018.04.008

    Article  Google Scholar 

  8. Lim, S.J., Jang, S.J., Lim, J.Y., Ko, J.H.: Classification of snoring sound based on a recurrent neural network. Expert Syst. Appl. 123, 237–245 (2019). https://doi.org/10.1016/j.eswa.2019.01.020

    Article  Google Scholar 

  9. Jeong, I.-Y., Lim, H.: Audio tagging system for DCASE 2018: focusing on label noise, data augmentation, and its efficient learning (2018)

    Google Scholar 

  10. Dorfer, M., Widmer, G.: Grating general -purpose audio tagging networks with noisy labels and interactive self-verification (2018)

    Google Scholar 

  11. Kaggle, F.: General-Purpose Audio Tagging Challenge

    Google Scholar 

  12. IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events. http://dcase.community/challenge2018/

  13. Shen, G., Nguyen, Q., Choi, J.: An environmental sound source classification system based on mel-frequency cepstral coefficients and gaussian mixture models. IFAC Proc. Vol. 45, 1802–1807 (2012). https://doi.org/10.3182/20120523-3-RO-2023.00251

    Article  Google Scholar 

  14. Fonseca, E., Plakal, M., Font, F., et al: General-purpose Tagging of Freesound Audio with AudioSet Labels: Task Description, Dataset, and Baseline (2018)

    Google Scholar 

  15. Ozer, I., Ozer, Z., Findik, O.: Noise robust sound event classification with the convolutional neural network. Neurocomputing 272, 505–512 (2018). https://doi.org/10.1016/j.neucom.2017.07.021

    Article  Google Scholar 

  16. Piczak, K.J.: Environmental sound classification with convolutional neural networks. In: 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6 (2015)

    Google Scholar 

  17. Peréz Peréz, E.: Diseño de una metodología para el procesamiento de imágenes mamográficas basada en técnicas de aprendizaje profundo. Universidad Politécnica de Madrid (2017)

    Google Scholar 

  18. Picazo Montoya, Ó.: Redes Neuronales Convolucionales Profundas para el reconocimiento de emociones en imágenes. Universidad Politécnica de Madrid (2018)

    Google Scholar 

  19. Developers G MediaRecorder. https://developer.android.com/reference/android/media/MediaRecorder

  20. Developer A AVAudioRecorder

    Google Scholar 

  21. Howard, A.G., Zhu, M., Chen, B., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR abs/1704.0 (2017)

    Google Scholar 

  22. Developer A CoreML. https://developer.apple.com/documentation/coreml

  23. Marozzo, F.: Infrastructures for High-Performance Computing: Cloud Infrastructures. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology, pp. 240–246. Academic Press, Oxford (2019)

    Chapter  Google Scholar 

  24. Wasserman, T. Software engineering issues for mobile application development. In: FoSER (2010)

    Google Scholar 

  25. Łopatka, K., Zwan, P., Czyżewski, A.: Dangerous sound event recognition using support vector machine classifiers. In: Advances in Intelligent and Soft Computing, pp. 49–57 (2010)

    Google Scholar 

  26. Almaadeed, N., Asim, M., Al-Maadeed, S., Bouridane, A., Beghdadi, A.: Automatic detection and classification of audio events for road surveillance applications. Sensors 18(6), 1858 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Ruiz-Vivanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mora-Regalado, M.J., Ruiz-Vivanco, O., Gonzalez-Eras, A. (2020). SMCS: Mobile Model Oriented to Cloud for the Automatic Classification of Environmental Sounds. In: Botto-Tobar, M., León-Acurio, J., Díaz Cadena, A., Montiel Díaz, P. (eds) Advances in Emerging Trends and Technologies. ICAETT 2019. Advances in Intelligent Systems and Computing, vol 1066. Springer, Cham. https://doi.org/10.1007/978-3-030-32022-5_43

Download citation

Publish with us

Policies and ethics