Skip to main content

An IPM Approach to Multi-robot Cooperative Localization: Pepper Humanoid and Wheeled Robots in a Shared Space

  • Conference paper
  • First Online:
Book cover Informatics in Control, Automation and Robotics (ICINCO 2018)

Abstract

In this work we investigate the problem of multi-robot cooperative localization in dynamic environments. Specifically, we propose an approach where wheeled robots are localized using the monocular camera embedded in the head of a Pepper humanoid robot, to the end of minimizing deviations from their paths and avoiding each other during navigation tasks. Indeed, position estimation requires obtaining a linear relationship between points in the image and points in the world frame: to this end, an Inverse Perspective mapping (IPM) approach has been adopted to transform the acquired image into a bird eye view of the environment. The scenario is made more complex by the fact that Pepper’s head is moving dynamically while tracking the wheeled robots, which requires to consider a different IPM transformation matrix whenever the attitude (Pitch and Yaw) of the camera changes. Finally, the IPM position estimate returned by Pepper is merged with the estimate returned by the odometry of the wheeled robots through an Extened Kalman Filter. Experiments are shown with multiple robots moving along different paths in a shared space, by avoiding each other without onboard sensors, i.e., by relying only on mutual positioning information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Commercialized by iRobot, https://www.irobot.com/.

  2. 2.

    Commercialized by SoftBank Robotics, https://www.softbankrobotics.com/us/pepper.

  3. 3.

    https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/.

  4. 4.

    http://www.ros.org/.

References

  1. Boyle DP, Gupta HV, Sorooshian S (2000) Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resour Res 36(12):3663–3674

    Article  Google Scholar 

  2. Bruno B, Chong N, Kamide H, Kanoria S, Lee J, Lim Y, Pandey A, Papadopoulos C, Papadopoulos I, Pecora F, Saffiotti A, Sgorbissa A (2017) Paving the way for culturally competent robots: a position paper. In: RO-MAN 2017 - 26th IEEE international symposium on robot and human interactive communication, vol 2017-January, pp 553–560

    Google Scholar 

  3. Civera J, Davison AJ, Montiel JM (2008) Inverse depth parametrization for monocular slam. IEEE Trans Rob 24(5):932–945

    Article  Google Scholar 

  4. Guo C, Meguro JI, Kojima Y, Naito T (2014) Automatic lane-level map generation for advanced driver assistance systems using low-cost sensors. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 3975–3982. IEEE

    Google Scholar 

  5. Laganiere R (2000) Compositing a bird’s eye view mosaic. Image 10:3

    Google Scholar 

  6. Lemaignan S, Warnier M, Sisbot EA, Clodic A, Alami R (2017) Artificial cognition for social human-robot interaction: an implementation. Artif Intell 247:45–69

    Article  MathSciNet  Google Scholar 

  7. Lin CC, Wang MS (2012) A vision based top-view transformation model for a vehicle parking assistant. Sensors 12(4):4431–4446

    Article  Google Scholar 

  8. Ma L, Yang X, Tao D (2014) Person re-identification over camera networks using multi-task distance metric learning. IEEE Trans Image Process 23(8):3656–3670

    Article  MathSciNet  Google Scholar 

  9. Mallot HA, Bülthoff HH, Little J, Bohrer S (1991) Inverse perspective mapping simplifies optical flow computation and obstacle detection. Biol Cybern 64(3):177–185

    Article  Google Scholar 

  10. Mastrogiovanni F, Sgorbissa A, Zaccaria R (2009) Context assessment strategies for ubiquitous robots. In: Proceedings IEEE international conference on robotics and automation (ICRA 2009), pp 2717–2722

    Google Scholar 

  11. Mastrogiovanni F, Sgorbissa A, Zaccaria R (2009) Robust navigation in an unknown environment with minimal sensing and representation. IEEE Trans Syst Man Cybern B Cybern 39(1):212–229

    Article  Google Scholar 

  12. Maurino DE, Reason J, Johnston N, Lee RB (2017) Beyond aviation human factors: safety in high technology systems. Routledge

    Google Scholar 

  13. Miraldo P, Araujo H (2013) Calibration of smooth camera models. IEEE Trans Pattern Anal Mach Intell 35(9):2091–2103

    Article  Google Scholar 

  14. Moreno D, Taubin G (2012) Simple, accurate, and robust projector-camera calibration. In: 2012 second international conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT), pp 464–471. IEEE (2012)

    Google Scholar 

  15. Morro A, Sgorbissa A, Zaccaria R (2011) Path following for unicycle robots with an arbitrary path curvature. IEEE Trans Rob 27(5):1016–1023

    Article  Google Scholar 

  16. Mukhtar A, Xia L, Tang TB (2015) Vehicle detection techniques for collision avoidance systems: a review. IEEE Trans Intell Transp Syst 16(5):2318–2338

    Article  Google Scholar 

  17. Munaro M, Basso F, Menegatti E (2016) OpenPTrack: open source multi-camera calibration and people tracking for RGB-D camera networks. Rob Auton Syst 75:525–538

    Article  Google Scholar 

  18. Muscolo G, Recchiuto C (2017) Flexible structure and wheeled feet to simplify biped locomotion of humanoid robots. Int J Hum Rob 14(1)

    Article  Google Scholar 

  19. Oliveira M, Santos V, Sappa AD (2015) Multimodal inverse perspective mapping. Inf Fusion 24:108–121

    Article  Google Scholar 

  20. Pandey AK, Gelin R (2018) A mass-produced sociable humanoid robot: pepper: the first machine of its kind. IEEE Rob Autom Mag 25(3):40–48

    Article  Google Scholar 

  21. Parmiggiani A, Fiorio L, Scalzo A, Sureshbabu A, Randazzo M, Maggiali M, Pattacini U, Lehmann H, Tikhanoff V, Domenichelli D, Cardellino A, Congiu P, Pagnin A, Cingolani R, Natale L, Metta G (2017) The design and validation of the R1 personal humanoid. In: IEEE international conference on intelligent robots and systems, vol 2017-September, pp 674–680

    Google Scholar 

  22. Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand-robot swarm. Science 345(6198):795–799

    Article  Google Scholar 

  23. Saeedi S, Trentini M, Seto M, Li H (2016) Multiple-robot simultaneous localization and mapping: a review. J Field Rob 33(1):3–46

    Article  Google Scholar 

  24. Saffiotti A, Broxvall M, Gritti M, LeBlanc K, Lundh R, Rashid J, Seo B, Cho Y (2008) The PEIS-ecology project: vision and results. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, IROS, pp 2329–2335

    Google Scholar 

  25. Siciliano B, Khatib O (2016) Springer handbook of robotics. Springer, Heidelberg

    Book  Google Scholar 

  26. Stein G, Dagan E, Mano O, Shashua, A (2017) Collision warning system. US Patent 9,656,607

    Google Scholar 

  27. Tanveer MH, Recchiuto CT, Sgorbissa A (2018) Analysis of path following and obstacle avoidance for multiple wheeled robots in a shared workspace. Robotica 37(1):80–108

    Article  Google Scholar 

  28. Tanveer MH, Recchiuto CT, Sgorbissa A (2018) Coordinated behaviour with a Pepper Humanoid robot to estimate the distance of other robot using inverse perspective mapping. In: IEEE international conference on automation and robotics (ICAROB)

    Google Scholar 

  29. Tanveer MH, Sgorbissa A (2018) An inverse perspective mapping approach using monocular camera of pepper humanoid robot to determine the position of other moving robot in plane. In: Proceedings of the 15th international conference on informatics in control, automation and robotics, vol 2. ICINCO, pp 219–225. INSTICC, SciTePress

    Google Scholar 

  30. Tuohy S, O’Cualain D, Jones E, Glavin M (2010) Distance determination for an automobile environment using inverse perspective mapping in OpenCV. In: IET irish signals and systems conference (ISSC)

    Google Scholar 

  31. Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T (2014) scikit-image: image processing in Python. PeerJ 2:e453

    Article  Google Scholar 

  32. Wang X (2013) Intelligent multi-camera video surveillance: a review. Pattern Recogn Lett 34(1):3–19

    Article  Google Scholar 

  33. Yenikaya S, Yenikaya G, Düven E (2013) Keeping the vehicle on the road: a survey on on-road lane detection systems. ACM Comput Surv (CSUR) 46(1):2

    Article  Google Scholar 

Download references

Acknowledgement

This work has been partially funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 737858 (CARESSES (www.caressesrobot.org)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hassan Tanveer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanveer, M.H., Sgorbissa, A., Thomas, A. (2020). An IPM Approach to Multi-robot Cooperative Localization: Pepper Humanoid and Wheeled Robots in a Shared Space. In: Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics. ICINCO 2018. Lecture Notes in Electrical Engineering, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-030-31993-9_21

Download citation

Publish with us

Policies and ethics