Skip to main content

Experimental Test of a Classical Causal Model for Quantum Correlations

  • Chapter
  • First Online:
  • 528 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

We experimentally test a causal model that can explain Bell correlations—with a causal link between the outcomes. We find insufficient evidence that this model holds. With the same setup, we also obtain correlations that cannot be explained with this causal model, therefore ruling out completely this causal model as an explanation for quantum correlations in a Bell-type experiment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chaves R, Kueng R, Brask JB, Gross D (2015) Unifying framework for relaxations of the causal assumptions in bell’s theorem. Phys Rev Lett 114:140403

    Article  ADS  Google Scholar 

  2. Bell JS (1964) On the Einstein-Podolsky-Rosen paradox. Physics 1:195

    Article  MathSciNet  Google Scholar 

  3. Ringbauer M et al (2016) Experimental test of nonlocal causality. Sci Adv 2:e1600162

    Article  ADS  Google Scholar 

  4. Brans CH (1988) Bell’s theorem does not eliminate fully causal hidden variables. Int J Theor Phys 27:219–226

    Article  Google Scholar 

  5. Branciard C et al (2008) Testing quantum correlations versus single-particle properties within Leggett’s model and beyond. Nat Phys 4:681–685

    Article  Google Scholar 

  6. Hall MJW (2010) Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys Rev Lett 105:250404

    Article  ADS  Google Scholar 

  7. Hall MJW (2011) Relaxed bell inequalities and Kochen-Specker theorems. Phys Rev A 84:022102

    Article  ADS  Google Scholar 

  8. Barrett J, Gisin N (2011) How much measurement independence is needed to demonstrate nonlocality? Phys Rev Lett 106:100406

    Article  ADS  Google Scholar 

  9. Wood CJ, Spekkens RW (2015) The lesson of causal discovery algorithms for quantum correlations: causal explanations of bell-inequality violations require fine-tuning. New J Phys 17:033002

    Article  Google Scholar 

  10. Aktas D et al (2015) Demonstration of quantum nonlocality in the presence of measurement dependence. Phys Rev Lett 114:220404

    Article  ADS  Google Scholar 

  11. Pütz G, Gisin N Measurement dependent locality (2015). arXiv:1510.09087

  12. Pearl J (2009) Causality. Cambridge University Press

    Google Scholar 

  13. Spirtes P, Glymour N, Scheines R (2001) Causation, prediction, and search, 2nd edn. The MIT Press

    Google Scholar 

  14. Geiger D, Meek C (1999) Quantifier elimination for statistical problems. In: Proceedings of the 15th conference on uncertainty in artificial intelligence, pp 226–235

    Google Scholar 

  15. Tian J, Pearl J (2002) On the testable implications of causal models with hidden variables. In: Proceedings of the eighteenth conference on uncertainty in artificial intelligence, pp 519–527. Morgan Kaufmann Publishers Inc

    Google Scholar 

  16. Chaves R et al (2014) Inferring latent structures via information inequalities. In: Proceedings of the 30th conference on uncertainty in artificial intelligence, pp 112–121

    Google Scholar 

  17. Mooij JM, Peters J, Janzing D, Zscheischler J, Schölkopf B (2014) Distinguishing cause from effect using observational data: methods and benchmarks. arXiv:1412.3773

  18. Clauser JF, Horne MA, Shimony A, Holt RA (1969) Proposed experiment to test local hidden-variable theories. Phys Rev Lett 23:880–884

    Article  ADS  Google Scholar 

  19. Janzing D, Balduzzi D, Grosse-Wentrup M, Schölkopf B (2013) Quantifying causal influences. Ann Statist 41:2324–2358

    Article  MathSciNet  Google Scholar 

  20. Ried K et al (2015) A quantum advantage for inferring causal structure. Nat Phys 11:414–420

    Article  Google Scholar 

  21. Armstrong S et al (2015) Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks. Nat Phys 11:167 EP

    Article  ADS  Google Scholar 

  22. Hill S, Wootters WK (1997) Entanglement of a pair of quantum bits. Phys Rev Lett 78

    Article  ADS  Google Scholar 

  23. Symul T, Assad SM, Lam PK (2011) Real time demonstration of high bitrate quantum random number generation with coherent laser light. App Phys Lett 98

    Article  ADS  Google Scholar 

  24. Gallicchio J, Friedman AS, Kaiser DI (2014) Testing bell’s inequality with cosmic photons: closing the setting-independence loophole. Phys Rev Lett 112:110405

    Article  ADS  Google Scholar 

  25. Costa F, Shrapnel S (2016) Quantum causal modelling. New J Phys 18:063032

    Article  Google Scholar 

  26. Chiribella G, D’Ariano GM, Perinotti P (2008) Transforming quantum operations: quantum supermaps 83:30004

    Article  ADS  Google Scholar 

  27. Giarmatzi C, Costa F (2018) A quantum causal discovery algorithm. npj Quantum Inf 4:17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Giarmatzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giarmatzi, C. (2019). Experimental Test of a Classical Causal Model for Quantum Correlations. In: Rethinking Causality in Quantum Mechanics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31930-4_5

Download citation

Publish with us

Policies and ethics