Skip to main content

Introduction

  • Chapter
  • First Online:
Rethinking Causality in Quantum Mechanics

Part of the book series: Springer Theses ((Springer Theses))

  • 529 Accesses

Abstract

What happened to causality? This is the notion with which we understand nature: some event A causes another event B. According to general relativity, such relations are only feasible through a spacetime, in that it has to allow information to travel from A to B, and spacetimes are dynamical—they are shaped by nearby massive objects. At first sight, it seems that quantum mechanics is consistent with causality: something that happened in a quantum system at point A (say preparation) can be the cause of what happens at a later point B (say measurement). But what happens when we create a superposition of such scenarios?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardy L (2007) Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure 40:3081–3099

    Google Scholar 

  2. Hardy L, Myrvold WC, Christian J (2009) Quantum gravity computers: on the theory of computation with indefinite causal structure. Springer, Dordrecht, pp 379–401

    Google Scholar 

  3. Chiribella G, D’Ariano GM, Perinotti P, Valiron B (2013) Quantum computations without definite causal structure. Phys Rev A 88:022318. arXiv:0912.0195

  4. Chiribella G, D’Ariano GM, Perinotti P (2008) Transforming quantum operations: quantum supermaps 83:30004

    Article  ADS  Google Scholar 

  5. Chiribella G (2012) Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys Rev A 86:040301. arXiv:1109.5154

  6. Oreshkov O, Costa F, Brukner ÄŚ (2012) Quantum correlations with no causal order. Nat Commun 3:1092

    Google Scholar 

  7. Costa F, Shrapnel S (2016) Quantum causal modelling. New J Phys 18:063032

    Article  Google Scholar 

  8. Giarmatzi C, Costa F (2018) A quantum causal discovery algorithm. npj Quantum Inf 4:17

    Google Scholar 

  9. Pearl J (2009) Causality. Cambridge University Press

    Google Scholar 

  10. Allen J-MA, Barrett J, Horsman DC, Lee CM, Spekkens RW (2016) Quantum common causes and quantum causal models 1609:09487

    Google Scholar 

  11. AraĂşjo M, Costa F, Brukner ÄŚ (2014) Computational advantage from quantum-controlled ordering of gates. Phys Rev Lett 113:250402. arXiv:1401.8127

  12. Zhao X, Giulio C (2019) Advantage of indefinite causal order in quantum metrology. In: Quantum information and measurement (QIM) V: Quantum Technologies, F5A.23, Optical Society of America, Rome

    Google Scholar 

  13. Feix A, AraĂşjo M, Brukner ÄŚ (2015) Quantum superposition of the order of parties as a communication resource. Phys Rev A 92:052326

    Article  ADS  Google Scholar 

  14. Guérin PA, Feix A, Araújo M, Brukner Č (2016) Exponential communication complexity advantage from quantum superposition of the direction of communication. Phys Rev Lett 117:100502

    Article  ADS  Google Scholar 

  15. Giulio C (2018) Indefinite causal order enables perfect quantum communication with zero capacity channel 1810:10457

    Google Scholar 

  16. Ebler D, Salek S, Chiribella G (2018) Enhanced communication with the assistance of indefinite causal order. Phys Rev Lett 120:120502

    Article  ADS  Google Scholar 

  17. Sina S (2018) Quantum communication in a superposition of causal orders 1809:06655

    Google Scholar 

  18. Oreshkov O, Giarmatzi C (2016) Causal and causally separable processes. New J Phys 18:093020

    Article  Google Scholar 

  19. Oreshkov O (2018) Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics 1801:07594

    Google Scholar 

  20. Oreshkov O, Cerf NJ (2015) Operational formulation of time reversal in quantum theory. Nat Phys 11:853 EP

    Article  ADS  Google Scholar 

  21. Oreshkov O, Cerf NJ (2016) Operational quantum theory without predefined time 18:073037

    Article  ADS  MathSciNet  Google Scholar 

  22. AraĂşjo M et al (2015) Witnessing causal nonseparability. New J Phys 17:102001

    Article  Google Scholar 

  23. Milz S, Pollock FA, Le TP, Chiribella G, Modi K (2018) Entanglement, non-markovianity, and causal non-separability 20:033033

    Article  ADS  MathSciNet  Google Scholar 

  24. Giarmatzi C, Costa F (2018) Witnessing quantum memory in non-Markovian processes. arXiv:1811.03722 [quant-ph]

  25. Ho CTM, Costa F, Giarmatzi C, Ralph TC (2018) Violation of a causal inequality in a spacetime with definite causal order. arXiv:1804.05498 [quant-ph]

  26. Wechs J, Abbott AA, Branciard C (2019) On the definition and characterisation of multipartite causal (non)separability 21:013027

    Google Scholar 

  27. Friis N, Dunjko V, DĂĽr W, Briegel HJ (2014) Implementing quantum control for unknown subroutines. Phys Rev A 89:030303

    Google Scholar 

  28. Procopio LM et al (2015) Experimental superposition of orders of quantum gates. Nat Commun 6:7913 EP

    Google Scholar 

  29. Friis N, Melnikov AA, Kirchmair G, Briegel HJ (2015) Coherent controlization using superconducting qubits. Sci Rep 5:18036 EP

    Google Scholar 

  30. Rubino G et al (2017) Experimental verification of an indefinite causal order. Sci Adv 3:e1602589

    Article  ADS  Google Scholar 

  31. Goswami K et al (2018) Indefinite causal order in a quantum switch. Phys Rev Lett 121:090503

    Google Scholar 

  32. Abbott AA, Giarmatzi C, Costa F, Branciard C (2016) Multipartite causal correlations: polytopes and inequalities. Phys Rev A 94:032131

    Article  ADS  Google Scholar 

  33. Ringbauer M et al (2016) Experimental test of nonlocal causality. Sci Adv 2. http://advances.sciencemag.org/content/2/8/e1600162.full.pdf

  34. Chaves R, Kueng R, Brask JB, Gross D (2015) Unifying framework for relaxations of the causal assumptions in bell’s theorem. Phys Rev Lett 114:140403

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Giarmatzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giarmatzi, C. (2019). Introduction. In: Rethinking Causality in Quantum Mechanics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31930-4_1

Download citation

Publish with us

Policies and ethics