Skip to main content

Prediction of Fluid Intelligence from T1-Weighted Magnetic Resonance Images

  • Conference paper
  • First Online:
Adolescent Brain Cognitive Development Neurocognitive Prediction (ABCD-NP 2019)

Abstract

We study predicting fluid intelligence of 9–10 year old children from T1-weighted magnetic resonance images. We extract volume and thickness measurements from MRI scans using FreeSurfer and the SRI24 atlas. We empirically compare two predictive models: (i) an ensemble of gradient boosted trees and (ii) a linear ridge regression model. For both, a Bayesian black-box optimizer for finding the best suitable prediction model is used. To systematically analyze feature importance our model, we employ results from game theory in the form of Shapley values. Our model with gradient boosting and FreeSurfer measures ranked third place among 24 submissions to the ABCD Neurocognitive Prediction Challenge. Our results on feature importance could be used to guide future research on the neurobiological mechanisms behind fluid intelligence in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See https://github.com/dmlc/xgboost/blob/master/demo/README.md.

  2. 2.

    https://nda.nih.gov/edit_collection.html?id=3104.

  3. 3.

    https://abcdstudy.org/images/Protocol_Imaging_Sequences.pdf.

  4. 4.

    See https://nda.nih.gov/data_structure.html?short_name=btsv01 for a full list of volumes.

  5. 5.

    https://scikit-optimize.github.io.

References

  1. Blair, C.: How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behav. Brain Sci. 29, 109–125; Discussion 125–160 (2006)

    Article  Google Scholar 

  2. Bron, E.E., et al.: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the caddementia challenge. NeuroImage 111, 562–579 (2015)

    Article  Google Scholar 

  3. Carroll, J.B.: Human Cognitive Abilities. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  5. Ferrer, E.: Fluid reasoning and the developing brain. Front. Neurosci. 3(1) (2009)

    Google Scholar 

  6. Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)

    Article  Google Scholar 

  7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  8. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  9. Gray, J.R., Chabris, C.F., Braver, T.S.: Neural mechanisms of general fluid intelligence. Nat. Neurosci. 6(3), 316–322 (2003)

    Article  Google Scholar 

  10. Haier, R.J., Jung, R.E., Yeo, R.A., Head, K., Alkire, M.T.: Structural brain variation and general intelligence. NeuroImage 23(1), 425–433 (2004)

    Article  Google Scholar 

  11. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  Google Scholar 

  12. Kozachenko, L.F., Leonenko, N.N.: Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii 23(2), 9–16 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems 30, pp. 4765–4774 (2017)

    Google Scholar 

  14. Narr, K.L., et al.: Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cereb. Cortex 17(9), 2163–2171 (2006)

    Article  Google Scholar 

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Pfefferbaum, A., et al.: Altered brain developmental trajectories in adolescents after initiating drinking. Am. J. Psychiatry 175(4), 370–380 (2018)

    Article  Google Scholar 

  17. Pölsterl, S., Gutiérrez-Becker, B., Sarasua, I., Guha Roy, A., Wachinger, C.: An auto-ML approach for the prediction of fluid intelligence from MRI-derived features. In: Pohl, K.M., et al. (eds.) Adolescent Brain Cognitive Development Neurocognitive Prediction Challenge (ABCD-NP-Challenge), ABCD-NP 2019. LNCS, vol. 11791, pp. 99–107 (2019)

    Google Scholar 

  18. Rohlfing, T., Zahr, N.M., Sullivan, E.V., Pfefferbaum, A.: The SRI24 multichannel atlas of normal adult human brain structure. Hum. Brain Mapp. 31(5), 798–819 (2010)

    Article  Google Scholar 

  19. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  20. Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)

    MathSciNet  MATH  Google Scholar 

  21. Shaw, P., et al.: Intellectual ability and cortical development in children and adolescents. Nature 440(7084), 676–679 (2006)

    Article  Google Scholar 

  22. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 25, 2951–2959 (2012)

    Google Scholar 

  23. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)

    Article  Google Scholar 

  24. Wachinger, C., Reuter, M., Alzheimer’s Disease Neuroimaging Initiative, et al.: Domain adaptation for Alzheimer’s disease diagnostics. Neuroimage 139, 470–479 (2016)

    Article  Google Scholar 

  25. Wright, S., Matlen, B., Baym, C., Ferrer, E., Bunge, S.: Neural correlates of fluid reasoning in children and adults. Front. Hum. Neurosci. 2, 8 (2008)

    Google Scholar 

  26. Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 82, 128–150 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Bavarian State Ministry of Education, Science and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Pölsterl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pölsterl, S., Gutiérrez-Becker, B., Sarasua, I., Guha Roy, A., Wachinger, C. (2019). Prediction of Fluid Intelligence from T1-Weighted Magnetic Resonance Images. In: Pohl, K., Thompson, W., Adeli, E., Linguraru, M. (eds) Adolescent Brain Cognitive Development Neurocognitive Prediction. ABCD-NP 2019. Lecture Notes in Computer Science(), vol 11791. Springer, Cham. https://doi.org/10.1007/978-3-030-31901-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31901-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31900-7

  • Online ISBN: 978-3-030-31901-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics