Skip to main content

Carbon Nanotubes-Based Mucosal Vaccines

  • Chapter
  • First Online:
Nanovaccines

Abstract

The use of nanomaterials is acquiring great potential in vaccinology since they can render effective vaccines due to their singular properties; nanomaterials can serve as carriers that efficiently deliver the antigen to antigen presenting cells and favor the critical steps on the elicitation of adaptive immune responses. In this chapter, the implications of carbon nanotubes (CNTs) in the vaccinology field are analyzed. Thus far, nanotubes-based mucosal vaccines have been designed mainly to fight diseases in fish looking to reduce production losses in aquaculture. Surprisingly, the use of nanotubes to develop mucosal vaccines for mammalians remains essentially unexplored, with only some studies dealing with their use as immunostimulants in the lungs to enhance immunity against cancer and influenza. One concern on this topic is the toxicity reported for CNTs in several studies, although still under debate. Thus, an important gap exists in this regard since there is a lack of detailed toxicity studies under exposure schemes resembling vaccination dosage. Overall, the functionalized forms of CNTs have shown reduced toxicity and exerted effects in immune cells. The critical avenues to expand the development of CNTs-based vaccines are discussed and although this application is at a very early stage of investigation; CNTs are considered an important piece in the portfolio of nanomaterials for vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alidori S, Thorek DLJ, Beattie BJ, Ulmert D, Almeida BA, Monette S, Scheinberg DA, McDevitt MR (2017) Carbon nanotubes exhibit fibrillar pharmacology in primates. PLoS One 12(8):e0183902

    Article  CAS  Google Scholar 

  • Alter G, Barouch D (2018) Immune correlate-guided HIV vaccine design. Cell Host Microbe 24(1):25–33

    Article  CAS  Google Scholar 

  • Bai W, Raghavendra A, Podila R, Brown JM (2016) Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4(+) T-cell proliferation. Int J Nanomedicine 11:4357–4371

    Article  CAS  Google Scholar 

  • Baker SE, Cai W, Lasseter TL, Weidkamp KP, Hamers RJ (2002) Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: synthesis and hybridization. Nano Lett 2(12):1413–1417

    Article  CAS  Google Scholar 

  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T (2006) Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 160:121–126

    Article  CAS  Google Scholar 

  • Brudeseth BE, Wiulsrød R, Fredriksen BN, Lindmo K, Løkling KE, Bordevik M, Steine N, Klevan A, Gravningen K (2013) Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol 35(6):1759–1768

    Article  CAS  Google Scholar 

  • Chen H, Zheng X, Nicholas J, Humes ST, Loeb JC, Robinson SE, Bisesi JH Jr, Das D, Saleh NB, Castleman WL, Lednicky JA, Sabo-Attwood T (2017) Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza A virus titers in mice. Virol J 14(1):242

    Article  CAS  Google Scholar 

  • Cho Y, Shin N, Kim D, Park JY, Hong S (2017) Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control. Biosci Rep 37(2):BSR20160330

    Article  CAS  Google Scholar 

  • Christophersen DV, Jacobsen NR, Andersen MH, Connell SP, Barfod KK, Thomsen MB, Miller MR, Duffin R, Lykkesfeldt J, Vogel U, Wallin H, Loft S, Roursgaard M, Møller P (2016) Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice. Toxicology 371:29–40

    Article  CAS  Google Scholar 

  • Cunha-Matos CA, Millington OR, Wark AW, Zagnoni M (2016) Real-time assessment of nanoparticle-mediated antigen delivery and cell response. Lab Chip 16(17):3374–3381

    Article  CAS  Google Scholar 

  • de Faria PC, dos Santos LI, Coelho JP, Ribeiro HB, Pimenta MA, Ladeira LO, Gomes DA, Furtado CA, Gazzinelli RT (2014) Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8(+) T cell response and protection against cancer. Nano Lett 14(9):5458–5470

    Article  CAS  Google Scholar 

  • Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528

    Article  CAS  Google Scholar 

  • Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR (2019) Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res 18:185–201

    Article  CAS  Google Scholar 

  • Fadel TR, Steenblock ER, Stern E, Li N, Wang X, Haller GL, Pfefferle LD, Fahmy TM (2008) Enhanced cellular activation with single walled carbon nanotube bundles presenting antibody stimuli. Nano Lett 8:2070–2076

    Article  CAS  Google Scholar 

  • Francis AP, Devasena T (2018) Toxicity of carbon nanotubes: a review. Toxicol Ind Health 34(3):200–210

    Article  CAS  Google Scholar 

  • Georgakilas V, Tagmatarchis N, Pantarotto D, Bianco A, Briand JP, Prato M (2002) Amino acid functionalisation of water soluble carbon nanotubes. Chem Commun (Camb) 24:3050–3051

    Article  CAS  Google Scholar 

  • Gerencsér G, Varjas T, Szendi K, Varga C (2016) In vivo induction of primary DNA lesions upon subchronic oral exposure to multi-walled carbon nanotubes. In Vivo 30(6):863–867

    Article  CAS  Google Scholar 

  • Geyik C, Evran S, Timur S, Telefoncu A (2014) The covalent bioconjugate of multiwalled carbon nanotube and amino-modified linearized plasmid DNA for gene delivery. Biotechnol Prog 30(1):224–232

    Article  CAS  Google Scholar 

  • Gong YX, Zhu B, Liu GL, Liu L, Ling F, Wang GX, Xu XG (2015) Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effects of a recombinant vaccine against Aeromonas hydrophila. Fish Shellfish Immunol 42(1):213–220

    Article  CAS  Google Scholar 

  • Guo Z, Lin Y, Wang X, Fu Y, Lin W, Lin X (2018) The protective efficacy of four iron-related recombinant proteins and their single-walled carbon nanotube encapsulated counterparts against Aeromonas hydrophila infection in zebrafish. Fish Shellfish Immunol 82:50–59

    Article  CAS  Google Scholar 

  • Hassan HA, Smyth L, Wang JT, Costa PM, Ratnasothy K, Diebold SS, Lombardi G, Al-Jamal KT (2016) Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy. Biomaterials 104:310–322

    Article  CAS  Google Scholar 

  • Hassan HAFM, Diebold SS, Smyth LA, Walters AA, Lombardi G, Al-Jamal KT (2019) Application of carbon nanotubes in cancer vaccines: achievements, challenges and chances. J Control Release 297:79–90

    Article  CAS  Google Scholar 

  • Ivani S, Karimi I, Tabatabaei SR, Syedmoradi L (2016) Effects of prenatal exposure to single-wall carbon nanotubes on reproductive performance and neurodevelopment in mice. Toxicol Ind Health 32(7):1293–1301

    Article  CAS  Google Scholar 

  • Jain AK, Dubey V, Mehra NK, Lodhi N, Nahar M, Mishra DK, Jain NK (2009) Carbohydrate-conjugated multiwalled carbon nanotubes: development and characterization. Nanomedicine 5(4):432–442

    Article  CAS  Google Scholar 

  • Jiang K, Schadler LS, Siegel RW, Zhang X, Zhang H, Terrones M (2004) Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J Mater Chem 14:37–39

    Article  CAS  Google Scholar 

  • John AA, Subramanian AP, Vellayappan MV, Balaji A, Mohandas H, Jaganathan SK (2015) Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery. Int J Nanomedicine 10:4267–4277

    CAS  Google Scholar 

  • Kang SH, Hong SJ, Lee YK, Cho S (2018) Oral vaccine delivery for intestinal immunity-biological basis, barriers, delivery system, and M cell targeting. Polymers 10(9):E948

    Article  CAS  Google Scholar 

  • Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, Rao AM, Ke PC, Wingard CJ, Brown JM (2012) A carbon nanotube toxicity paradigm driven by mast cells and the IL-33ST2 axis. Small 8:2904–2912

    Article  CAS  Google Scholar 

  • Konduru NV, Tyurina YY, Feng W, Basova LV, Belikova NA, Bayir H, Clark K, Rubin M, Stolz D, Vallhov H, Scheynius A, Witasp E, Fadeel B, Kichambare PD, Star A, Kisin ER, Murray AR, Shvedova AA, Kagan VE (2009) Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. PLoS One 4:e4398

    Article  CAS  Google Scholar 

  • Krishna L, Dhamodaran K, Jayadev C, Chatterjee K, Shetty R, Khora SS, Das D (2016) Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther 7(1):188

    Article  CAS  Google Scholar 

  • Kuche K, Maheshwari R, Tambe V, Mak KK, Jogi H, Raval N, Pichika MR, Kumar Tekade R (2018) Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential. Nanoscale 10(19):8911–8937

    Article  CAS  Google Scholar 

  • Lee M, Baik KY, Noah M, Kwon YK, Lee JO, Hong S (2009) Nanowire and nanotube transistors for lab-on-a-chip applications. Lab Chip 9:2267–2280

    Article  CAS  Google Scholar 

  • Li R, Wu RA, Zhao L, Wu M, Yang L, Zou H (2010) P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4(3):1399–1408

    Article  CAS  Google Scholar 

  • Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chung TS, Goh SH, Leong KW (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed 44:4782–4785

    Article  CAS  Google Scholar 

  • Liu L, Gong YX, Zhu B, Liu GL, Wang GX, Ling F (2015) Effect of a new recombinant Aeromonas hydrophila vaccine on the grass carp intestinal microbiota and correlations with immunological responses. Fish Shellfish Immunol 45(1):175–183

    Article  CAS  Google Scholar 

  • Lopalco PL (2017) Wild and vaccine-derived poliovirus circulation, and implications for polio eradication. Epidemiol Infect 145(3):413–419

    Article  CAS  Google Scholar 

  • Mahajan S, Patharkar A, Kuche K, Maheshwari R, Deb PK, Kalia K, Tekade RK (2018) Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm 548(1):540–558

    Article  CAS  Google Scholar 

  • Méndez-Samperio P (2019) Current challenges and opportunities for Bacillus Calmette-Guérin-replacement vaccine candidates. Scand J Immunol 4:e12772

    Google Scholar 

  • Meunier E, Coste A, Olagnier D, Authier H, Lefèvre L, Dardenne C, Bernad J, Béraud M, Flahaut E, Pipy B (2012) Double-walled carbon nanotubes trigger IL-1 b release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine 8:987–995

    Article  CAS  Google Scholar 

  • Mishra V, Kesharwani P, Jain NK (2018) Biomedical applications and toxicological aspects of functionalized carbon nanotubes. Crit Rev Ther Drug Carrier Syst 35(4):293–330

    Article  Google Scholar 

  • Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

    Article  CAS  Google Scholar 

  • Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64

    Article  CAS  Google Scholar 

  • Otsuka K, Yamada K, Taquahashi Y, Arakaki R, Ushio A, Saito M, Yamada A, Tsunematsu T, Kudo Y, Kanno J, Ishimaru N (2018) Long-term polarization of alveolar macrophages to a profibrotic phenotype after inhalation exposure to multi-wall carbon nanotubes. PLoS One 13(10):e0205702

    Article  CAS  Google Scholar 

  • Palomaki J, Välimäki E, Sund J, Vippola M, Clausen PA, Jensen KA, Savolainen K, Matikainen S, Alenius H (2011) Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5:6861–6870

    Article  CAS  Google Scholar 

  • Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand JP, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed Engl 43(39):5242–5246

    Article  CAS  Google Scholar 

  • Pardo J, Peng Z, Leblanc RM (2018) Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 23(2):E378

    Article  CAS  Google Scholar 

  • Park EJ, Choi J, Kim JH, Lee BS, Yoon C, Jeong U, Kim Y (2016) Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology 10(8):1188–1202

    Article  CAS  Google Scholar 

  • Petrov P, Stassin F, Pagnoulle C, Jérôme R (2003) Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chem Commun 17:2094–2095

    Google Scholar 

  • Pondman KM, Tsolaki AG, Paudyal B, Shamji MH, Switzer A, Pathan AA, Abozaid SM, Ten Haken B, Stenbeck G, Sim RB, Kishore U (2016) Complement deposition on nanoparticles can modulate immune responses by macrophage, B and T cells. J Biomed Nanotechnol 12(1):197–216

    Article  CAS  Google Scholar 

  • Porter AE, Gass M, Bendall JS, Muller K, Goode A, Skepper JN, Midgley PA, Welland M (2009) Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano 3:1485–1492

    Article  CAS  Google Scholar 

  • Schuetz AN (2019) Emerging agents of gastroenteritis: Aeromonas, Plesiomonas, and the diarrheagenic pathotypes of Escherichia coli. Semin Diagn Pathol 36:187

    Article  Google Scholar 

  • Star A, Stoddart JF, Steuerman D, Diehl M, Boukai A, Wong EW, Yang X, Chung SW, Choi H, Heath JR (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40:1721–1725

    Article  CAS  Google Scholar 

  • Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  • Tagmatarchis N, Prato M (2004) Functionalization of carbon nanotubes via 1, 3-dipolar cycloadditions. J Mater Chem 14(4):437–439

    Article  CAS  Google Scholar 

  • Tallapaka SB, Karuturi BVK, Yeapuri P, Curran SM, Sonawane YA, Phillips JA, David Smith D, Sanderson SD, Vetro JA (2019) Surface conjugation of EP67 to biodegradable nanoparticles increases the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccine after respiratory immunization and subsequent T-cell-mediated protection against respiratory infection. Int J Pharm 565:242

    Article  CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  • Versiani AF, Astigarraga RG, Rocha ES, Barboza AP, Kroon EG, Rachid MA, Souza DG, Ladeira LO, Barbosa-Stancioli EF, Jorio A, Da Fonseca FG (2017) Multi-walled carbon nanotubes functionalized with recombinant Dengue virus 3 envelope proteins induce significant and specific immune responses in mice. J Nanobiotechnol 15(1):26

    Article  CAS  Google Scholar 

  • Wang Y, Liu GL, Li DL, Ling F, Zhu B, Wang GX (2015) The protective immunity against grass carp reovirus in grass carp induced by a DNA vaccination using single-walled carbon nanotubes as delivery vehicles. Fish Shellfish Immunol 47(2):732–742

    Article  CAS  Google Scholar 

  • Wilson JM, Laurent P (2002) Fish gill morphology: inside out. J Exp Zool 293:192–213

    Article  Google Scholar 

  • Wu L, Tang H, Zheng H, Liu X, Liu Y, Tao J, Liang Z, Xia Y, Xu Y, Guo Y, Chen H, Yang J (2019) Multiwalled carbon nanotubes prevent tumor metastasis through switching M2-polarized macrophages to M1 via TLR4 activation. J Biomed Nanotechnol 15(1):138–150

    Article  CAS  Google Scholar 

  • Xing J, Liu Z, Huang Y, Qin T, Bo R, Zheng S, Luo L, Huang Y, Niu Y, Wang D (2016) Lentinan-modified carbon nanotubes as an antigen delivery system modulate immune response in vitro and in vivo. ACS Appl Mater Interfaces 8(30):19276–19283

    Article  CAS  Google Scholar 

  • Zhang T, Tang M, Zhang S, Hu Y, Li H, Zhang T, Xue Y, Pu Y (2017a) Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. Int J Nanomedicine 12:1539–1554

    Article  CAS  Google Scholar 

  • Zhang C, Zhao Z, Zha JW, Wang GX, Zhu B (2017b) Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effect of a DNA vaccine against spring viremia of carp virus in common carp. Fish Shellfish Immunol 71:191–201

    Article  CAS  Google Scholar 

  • Zhang C, Zhao Z, Liu GY, Li J, Wang GX, Zhu B (2018) Immune response and protective effect against spring viremia of carp virus induced by intramuscular vaccination with a SWCNTs-DNA vaccine encoding matrix protein. Fish Shellfish Immunol 79:256–264

    Article  CAS  Google Scholar 

  • Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342

    Article  CAS  Google Scholar 

  • Zhu B, Liu GL, Gong YX, Ling F, Song LS, Wang GX (2014) Single-walled carbon nanotubes as candidate recombinant subunit vaccine carrier for immunization of grass carp against grass carp reovirus. Fish Shellfish Immunol 41(2):279–293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosales-Mendoza, S., González-Ortega, O. (2019). Carbon Nanotubes-Based Mucosal Vaccines. In: Nanovaccines. Springer, Cham. https://doi.org/10.1007/978-3-030-31668-6_7

Download citation

Publish with us

Policies and ethics