Skip to main content

Versatile Physics with Liquid Xenon Dark Matter Detectors

  • Conference paper
  • First Online:
Illuminating Dark Matter

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 56))

  • 712 Accesses

Abstract

The much-discussed neutrino floor from atmospheric neutrinos will limit the sensitivity to directly search for WIMP dark matter, but is currently still well beyond our capabilities, namely by three orders of magnitude in rate and two generations in detectors. Liquid xenon-based detectors designed to truly probe WIMPs across this parameter range are sensitive to a wide range of physics channels, ranging from dark matter to neutrino physics and touching particle physics, nuclear physics and astrophysics. This contribution puts the current state of the art into perspective and sketches the science that can be done with current and upcoming liquid xenon detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Battaglieri et al., (2017). arXiv:1707.04591

  2. J.L. Feng, Annu. Rev. Astron. Astrophys. 48, 495 (2010). https://doi.org/10.1146/annurev-astro-082708-101659

    Article  ADS  Google Scholar 

  3. R.K. Leane, T.R. Slatyer, J.F. Beacom, K.C.Y. Ng, Phys. Rev. D 98(2), 023016 (2018). https://doi.org/10.1103/PhysRevD.98.023016

  4. J. Angle et al., Phys. Rev. Lett. 100, 021303 (2008). https://doi.org/10.1103/PhysRevLett.100.021303

  5. E. Aprile et al., Phys. Rev. Lett. 109, 181301 (2012). https://doi.org/10.1103/PhysRevLett.109.181301

  6. D.S. Akerib et al., Phys. Rev. Lett. 112, 091303 (2014). https://doi.org/10.1103/PhysRevLett.112.091303

  7. X. Cui et al., Phys. Rev. Lett. 119(18), 181302 (2017). https://doi.org/10.1103/PhysRevLett.119.181302

  8. E. Aprile et al., Phys. Rev. Lett. 121, 111302 (2018). https://doi.org/10.1103/PhysRevLett.121.111302

  9. B.J. Mount et al., (2017). arXiv:1703.09144

  10. E. Aprile et al., JCAP 1604(04), 027 (2016). https://doi.org/10.1088/1475-7516/2016/04/027

    Article  Google Scholar 

  11. J. Aalbers et al., JCAP 1611, 017 (2016). https://doi.org/10.1088/1475-7516/2016/11/017

    Article  Google Scholar 

  12. Wikipedia, XENON, https://en.wikipedia.org/wiki/XENON

  13. Wikipedia, Large underground xenon experiment. https://en.wikipedia.org/wiki/Large_Underground_Xenon_experiment

  14. D. Akimov et al., Science 357(6356), 1123 (2017). https://doi.org/10.1126/science.aao0990

    Article  ADS  Google Scholar 

  15. J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D 89(2), 023524 (2014). https://doi.org/10.1103/PhysRevD.89.023524

  16. D.S. Akerib et al., Phys. Rev. Lett. 116(16), 161302 (2016). https://doi.org/10.1103/PhysRevLett.116.161302

  17. J. Xia et al., Phys. Lett. B 792, 193 (2019). https://doi.org/10.1016/j.physletb.2019.02.043

    Article  ADS  Google Scholar 

  18. X. Ren et al., Phys. Rev. Lett. 121(2), 021304 (2018). https://doi.org/10.1103/PhysRevLett.121.021304

  19. E. Aprile et al., Phys. Rev. D 94(9), 092001 (2016). https://doi.org/10.1103/PhysRevD.94.092001, https://doi.org/10.1103/PhysRevD.95.059901. [Erratum: Phys. Rev. D 95(5), 059901 2017)]

  20. R. Essig, T. Volansky, T.T. Yu, Phys. Rev. D 96(4), 043017 (2017). https://doi.org/10.1103/PhysRevD.96.043017

  21. J. Bramante, B. Broerman, R.F. Lang, N. Raj, Phys. Rev. D 98(8), 083516 (2018). https://doi.org/10.1103/PhysRevD.98.083516

  22. M.J. Dolan, F. Kahlhoefer, C. McCabe, Phys. Rev. Lett. 121, 101801 (2018). https://doi.org/10.1103/PhysRevLett.121.101801

  23. M. Ibe, W. Nakano, Y. Shoji, K. Suzuki, JHEP 03, 194 (2018). https://doi.org/10.1007/JHEP03(2018)194

  24. D.S. Akerib et al., Phys. Rev. Lett. 118(26), 261301 (2017). https://doi.org/10.1103/PhysRevLett.118.261301

  25. H. An, M. Pospelov, J. Pradler, A. Ritz, Phys. Lett. B 747, 331 (2015). https://doi.org/10.1016/j.physletb.2015.06.018

    Article  ADS  Google Scholar 

  26. E. Aprile et al., Phys. Rev. D 90(6), 062009 (2014). https://doi.org/10.1103/PhysRevD.90.062009, https://doi.org/10.1103/PhysRevD.95.029904. [Erratum: Phys. Rev. D 95(2), 029904 (2017)]

  27. E. Aprile et al., Science 349(6250), 851 (2015). https://doi.org/10.1126/science.aab2069

    Article  ADS  Google Scholar 

  28. E. Aprile et al., Phys. Rev. D 96(12), 122002 (2017). https://doi.org/10.1103/PhysRevD.96.122002

  29. J.D. Clarke, R. Foot, Phys. Lett. B 766, 29 (2017). https://doi.org/10.1016/j.physletb.2016.12.047

    Article  ADS  Google Scholar 

  30. E. Aprile et al., Phys. Rev. D 96(2), 022008 (2017). https://doi.org/10.1103/PhysRevD.96.022008

  31. R. Harnik, J. Kopp, P.A.N. Machado, JCAP 1207, 026 (2012). https://doi.org/10.1088/1475-7516/2012/07/026

    Article  Google Scholar 

  32. R.F. Lang, C. McCabe, S. Reichard, M. Selvi, I. Tamborra, Phys. Rev. D 94(10), 103009 (2016). https://doi.org/10.1103/PhysRevD.94.103009

  33. K. Abe et al., PTEP 2018(5), 053D03 (2018). https://doi.org/10.1093/ptep/pty053

  34. J. Angle et al., Phys. Rev. Lett. 107, 051301 (2011). https://doi.org/10.1103/PhysRevLett.110.249901, https://doi.org/10.1103/PhysRevLett.107.051301. [Erratum: Phys. Rev. Lett. 110, 249901 (2013)]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael F. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, R.F. (2019). Versatile Physics with Liquid Xenon Dark Matter Detectors. In: Essig, R., Feng, J., Zurek, K. (eds) Illuminating Dark Matter. Astrophysics and Space Science Proceedings, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-31593-1_12

Download citation

Publish with us

Policies and ethics