Skip to main content

Compound Dirichlet Processes

  • Conference paper
  • First Online:
Selected Contributions on Statistics and Data Science in Latin America (FNE 2018)

Abstract

The compound Poisson process and the Dirichlet process are the pillar structures of renewal theory and Bayesian nonparametric theory, respectively. Both processes have many useful extensions to fulfill the practitioners’ needs to model the particularities of data structures. Accordingly, in this contribution, we join their primal ideas to construct the compound Dirichlet process and the compound Dirichlet process mixture. As a consequence, these new processes have a rich structure to model the time occurrence among events, with also a flexible structure on the arrival variables. These models have a direct Bayesian interpretation of their posterior estimators and are easy to implement. We obtain expressions of posterior distribution, nonconditional distribution, and expected values. In particular, to find these formulas, we analyze sums of random variables with Dirichlet process priors. We assess our approach by applying our model on a real data example of a contagious zoonotic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldous, D.J.: Exchangeability and related topics. In: École d’Été de Probabilités de Saint-Flour XIII 1983, pp. 1–198. Springer, Berlin (1985). https://doi.org/10.1007/BFb0099421

    Google Scholar 

  2. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis. Lecture Notes in Statistics, vol. 151. Springer, New York, NY (2000)

    Chapter  Google Scholar 

  3. Blackwell, D., MacQueen, J.B.: Ferguson distributions via polya urn schemes. Ann. Stat. (1973). https://doi.org/10.1214/aos/1176342372

    Article  MATH  Google Scholar 

  4. Bladt, M., Nielsen, B.F.: Matrix-Exponential Distributions in Applied Probability. Probability Theory and Stochastic Modelling, vol. 81. Springer, Boston (2017). https://doi.org/10.1007/978-1-4939-7049-0

    Book  Google Scholar 

  5. Brauer, F., van den Driessche, P., Wu, J. (eds.): Mathematical Epidemiology. Lecture Notes in Mathematics, vol. 1945. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78911-6

    MATH  Google Scholar 

  6. Bulla, P., Muliere, P.: Bayesian nonparametric estimation for reinforced markov renewal processes. Stat. Inference Stoch. Process. 10(3), 283–303 (2007). https://doi.org/10.1007/s11203-006-9000-x

    Article  MathSciNet  MATH  Google Scholar 

  7. Coen, A., Gutierrez, L., Mena, R.H.: Modeling failures times with dependent renewal type models via exchangeability. Submited (2018)

    Google Scholar 

  8. Coen, A., Mena, R.H.: Ruin probabilities for Bayesian exchangeable claims processes. J. Stat. Plan. Inference 166, 102–115 (2015). https://doi.org/10.1016/J.JSPI.2015.01.005

    Article  MathSciNet  MATH  Google Scholar 

  9. Cori, A., Nouvellet, P., Garske, T., Bourhy, H., Nakouné, E., Jombart, T.: A graph-based evidence synthesis approach to detecting outbreak clusters: an application to dog rabies. PLOS Comput. Biol. 14(12), e1006554 (2018). https://doi.org/10.1371/journal.pcbi.1006554

    Article  Google Scholar 

  10. Doksum, K.: Tailfree and neutral random probabilities and their posterior distributions. Ann. Probab. 2(2), 183–201 (1974)

    Article  MathSciNet  Google Scholar 

  11. Escobar, M.D.: Estimating normal means with a Dirichlet process prior. J. Am. Stat. Assoc. (1994). https://doi.org/10.1080/01621459.1994.10476468

    Article  MathSciNet  MATH  Google Scholar 

  12. Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90(430), 577 (1995). https://doi.org/10.2307/2291069

    Article  MathSciNet  MATH  Google Scholar 

  13. Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. (1995). https://doi.org/10.1080/01621459.1995.10476550

    Article  MathSciNet  MATH  Google Scholar 

  14. Ewens, W.J.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3(1), 87–112 (1972). https://doi.org/10.1016/0040-5809(72)90035-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Ferguson, T.S.: A bayesian analysis of some nonparametric problems. Ann. Stat. 1(2), 209–230 (1973). https://doi.org/10.1214/aos/1176342360

    Article  MathSciNet  MATH  Google Scholar 

  16. Ferguson, T.S.: Bayesian density estimation by mixtures of normal distributions. Recent Advances in Statistics, pp. 287–302 (1983). https://doi.org/10.1016/B978-0-12-589320-6.50018-6

    Chapter  Google Scholar 

  17. Frees, E.W.: Nonparametric renewal function estimation. Ann. Stat. 14(4), 1366–1378 (1986). https://doi.org/10.1214/aos/1176350163

    Article  MathSciNet  MATH  Google Scholar 

  18. Gebizlioglu, O.L., Eryilmaz, S.: The maximum surplus in a finite-time interval for a discrete-time risk model with exchangeable, dependent claim occurrences. Appl. Stoch. Model. Bus. Ind. (2018). https://doi.org/10.1002/asmb.2415

    Article  Google Scholar 

  19. Ghosal, S., van der Vaart, A.: Posterior convergence rates of Dirichlet mixtures at smooth densities. Ann. Stat. 35(2), 697–723 (2007). https://doi.org/10.1214/009053606000001271

    Article  MathSciNet  MATH  Google Scholar 

  20. Görür, D., Rasmussen, C.E.: Dirichlet process gaussian mixture models: choice of the base distribution. J. Comput. Sci. Technol. (2010). https://doi.org/10.1007/s11390-010-9355-8

    Article  MathSciNet  Google Scholar 

  21. Ishwaran, H., James, L.F.: Gibbs sampling methods for stick-breaking priors. J. Am. Stat. Assoc. (2001). https://doi.org/10.1198/016214501750332758

    Article  MathSciNet  MATH  Google Scholar 

  22. Kingman, J.F.C.: Poisson Processes. Oxford Studies in Probability. Clarendon Press, Oxford (1992)

    Google Scholar 

  23. Korwar, R.M., Hollander, M.: Contributions to the theory of dirichlet processes. Ann. Probab. 1(4), 705–711 (1973). https://doi.org/10.1214/aop/1176996898

    Article  MathSciNet  MATH  Google Scholar 

  24. Kovalenko, I.N., Pegg, P.A.: Mathematical Theory of Reliability of Time Dependent Systems With Practical Applications. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, Hoboken (1997)

    Google Scholar 

  25. Lenk, P.J.: The logistic normal distribution for bayesian, nonparametric, predictive densities. J. Am. Stat. Assoc. 83(402), 509 (1988). https://doi.org/10.2307/2288870

    Article  MathSciNet  MATH  Google Scholar 

  26. Lijoi, A., Mena, R.H., Prünster, I.: Bayesian nonparametric analysis for a generalized dirichlet process prior. Stat. Inference Stoch. Process. 8(3), 283–309 (2005). https://doi.org/10.1007/s11203-005-6071-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Lo, A.Y.: On a class of bayesian nonparametric estimates: I. density estimates. Ann. Stat. 12(1), 351–357 (1984). https://doi.org/10.1214/aos/1176346412

    Article  MathSciNet  MATH  Google Scholar 

  28. Maceachern, S.N., Müller, P.: Estimating mixture of dirichlet process models. J. Comput. Graph. Stat. (1998). https://doi.org/10.1080/10618600.1998.10474772

    Article  Google Scholar 

  29. Nadarajah, S., Li, R.: The exact density of the sum of independent skew normal random variables. J. Comput. Appl. Math. 311, 1–10 (2017). https://doi.org/10.1016/J.CAM.2016.06.032

    Article  MathSciNet  MATH  Google Scholar 

  30. Nadarajaha, S., Chanb, S.: The exact distribution of the sum of stable random variables. J. Comput. Appl. Math. 349, 187–196 (2019). https://doi.org/10.1016/J.CAM.2018.09.044

    Article  MathSciNet  Google Scholar 

  31. Neal, R.M.: Markov chain sampling methods for dirichlet process mixture models. J. Comput. Graph. Stat. (2000). https://doi.org/10.1080/10618600.2000.10474879

    Article  MathSciNet  Google Scholar 

  32. Pitman, J.: Some developments of the Blackwell-MacQueen urn scheme. In: Statistics, Probability and Game Theory, pp. 245–267. Institute of Mathematical Statistics, Beachwood (1996). https://doi.org/10.1214/lnms/1215453576

    Google Scholar 

  33. Pitman, J.: Poisson-Kingman partitions. In: Statistics and Science: A Festschrift for Terry Speed, pp. 1–34. Institute of Mathematical Statistics, Beachwood (2003). https://doi.org/10.1214/lnms/1215091133

    Google Scholar 

  34. Prünster, I., Lijoi, A., Regazzini, E.: Distributional results for means of normalized random measures with independent increments. Ann. Stat. 31(2), 560–585 (2003). https://doi.org/10.1214/aos/1051027881

    Article  MathSciNet  MATH  Google Scholar 

  35. Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic processes for insurance and finance. Wiley Series in Probability and Statistics. Wiley, Chichester (1999). https://doi.org/10.1002/9780470317044

    MATH  Google Scholar 

  36. Tokdar, S.T.: Posterior consistency of Dirichlet location-scale mixture of normals in density estimation and regression. Sankhy Indian J. Stat. (2003–2007) 68(1), 90–110 (2006)

    Google Scholar 

  37. Webber, R.: Communicable Disease Epidemiology and Control: A Global Perspective. Modular Texts, Cabi (2009)

    Book  Google Scholar 

  38. World Health Organization: WHO Expert Consultation on Rabies: Third Report. World Health Organization, Geneva (2018). 92 4 120931 3

    Google Scholar 

  39. Xiao, S., Kottas, A., Sansó, B.: Modeling for seasonal marked point processes: an analysis of evolving hurricane occurrences. Ann. Appl. Stat. 9(1), 353–382 (2015). https://doi.org/10.1214/14-AOAS796

    Article  MathSciNet  MATH  Google Scholar 

  40. Ypma, R.J.F., Donker, T., van Ballegooijen, W.M., Wallinga, J.: Finding evidence for local transmission of contagious disease in molecular epidemiological datasets. PLoS ONE 8(7), e69875 (2013). https://doi.org/10.1371/journal.pone.0069875

    Article  Google Scholar 

  41. Zhang, C.H.: Estimation of sums of random variables: examples and information bounds. Ann. Stat. 33(5), 2022–2041 (2005). https://doi.org/10.1214/009053605000000390

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the editor and two anonymous reviewers for their useful comments which significantly improved the presentation and quality of the paper. The first author is grateful to Prof. Ramsés Mena for the valuable suggestions on an earlier version of the manuscript. This research was partially supported by a DGAPA Postdoctoral Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arrigo Coen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coen, A., Godínez-Chaparro, B. (2019). Compound Dirichlet Processes. In: Antoniano-Villalobos, I., Mena, R., Mendoza, M., Naranjo, L., Nieto-Barajas, L. (eds) Selected Contributions on Statistics and Data Science in Latin America. FNE 2018. Springer Proceedings in Mathematics & Statistics, vol 301. Springer, Cham. https://doi.org/10.1007/978-3-030-31551-1_4

Download citation

Publish with us

Policies and ethics