Skip to main content

Case Study of Digitization of the Production Cell

  • Conference paper
  • First Online:
Proceedings of the International Symposium for Production Research 2019 (ISPR 2019, ISPR 2019)

Abstract

This paper focuses on the introduction of digitization in the production process. When deploying Industry-Oriented 4.0 components in the plant, emphasis is placed on HMI and workplace visualization. Designing a suitable way to visualize data obtained from the production process can have a significant impact on the workplace response. Timely and properly conducted responses to potential changes in the production process have a positive impact on the resulting quality of the production process. Continuous development of the elements of virtual and augmented reality also increases their usability in the field of data visualization from the production process. These technologies make it possible to meet the high demands on the clarity of a great deal of information.

This paper introduces the creation of a production cell into virtual and augmented reality. Particular emphasis is placed on the way of data visualization, including the environment, geometric accuracy of the CNC machine tool, and information from the safety parts. For efficient information handling, access to their display in virtual and augmented reality has been chosen.

The first part of the publication introduces methods for creating a virtual model based on photogrammetry. In the second part of the publication, procedures are presented for collecting and visualizing information on the geometric accuracy of the machine. Finally, procedures related to the risk analysis and functional safety of CNC machine tools are presented. In conclusion, the advantages, disadvantages, and recommendations of the presented solution, the critical places and the difficulty with the realization of the virtual workplace are referred to.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blecha, P., Durakbasa, N., Holub, M.: Digitized production – its potentials and hazards. In: Proceedings of the International Symposium Production Research 2018, pp. 402–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92267-6_35

  2. Ruzarovsky, R., Holubek, R., Sobrino, D.R.D., Janicek, M.: The simulation of conveyor control system using the virtual commissioning and virtual reality. Adv. Sci. Technol. J. 12, 164–171 (2018). https://doi.org/10.12913/22998624/100349

    Article  Google Scholar 

  3. Kroupa, J., Tuma, Z., Kovar, J., Singule, V.: Virtual laboratory for study of construction of machine tools. MM Sci. J. 2018, 2503–2506 (2018). https://doi.org/10.17973/MMSJ.2018_11_2017100

    Article  Google Scholar 

  4. Kovar, J., Mouralova, K., Ksica, F., Kroupa, J., Andrs, O., Hadas, Z.: Virtual reality in context of Industry 4.0 proposed projects at Brno University of Technology. In: Proceedings of 2016 17th International Conference Mechatronics - Mechatronika, ME 2016 (2017)

    Google Scholar 

  5. Holub, M., Bradac, F., Pokorny, Z., Jelinek, A.: Application of a ballbar fordiagnostics of cnc machine tools. MM Sci. J. 12, 2601–2605 (2018). https://doi.org/10.17973/MMSJ.2018_12_2018032

    Article  Google Scholar 

  6. Archenti, A.: Prediction of machined part accuracy from machining system capability. CIRP Ann. 63, 505–508 (2014). https://doi.org/10.1016/J.CIRP.2014.03.040

    Article  Google Scholar 

  7. Szipka, K., Laspas, T., Archenti, A.: Measurement and analysis of machine tool errors under quasi-static and loaded conditions. Precis. Eng. 51, 59–67 (2018). https://doi.org/10.1016/J.PRECISIONENG.2017.07.011

    Article  Google Scholar 

  8. Vichare, P., Nassehi, A., Flynn, J.M., Newman, S.T.: Through life machine tool capability modelling. Procedia Manuf. 16, 171–178 (2018). https://doi.org/10.1016/J.PROMFG.2018.10.163

    Article  Google Scholar 

  9. Wąsik, M., Kolka, A.: Machining accuracy improvement by compensation of machine and workpiece deformation. Procedia Manuf. 11, 2187–2194 (2017). https://doi.org/10.1016/J.PROMFG.2017.07.365

    Article  Google Scholar 

  10. Belforte, G., Bona, B., Canuto, E., Donati, F., Ferraris, F., Gorini, I., Morei, S., Peisino, M., Sartori, S., Levi, R.: Coordinate measuring machines and machine tools self calibration and error correction. CIRP Ann. 36, 359–364 (1987). https://doi.org/10.1016/S0007-8506(07)62622-5

    Article  Google Scholar 

  11. Mendikute, A., Leizea, I., Yagüe-Fabra, J.A., Zatarain, M.: Self-calibration technique for on-machine spindle-mounted vision systems. Measurement 113, 71–81 (2018). https://doi.org/10.1016/J.MEASUREMENT.2017.08.029

    Article  Google Scholar 

  12. Givi, M., Mayer, J.R.R.: Validation of volumetric error compensation for a five-axis machine using surface mismatch producing tests and on-machine touch probing. Int. J. Mach. Tools Manuf 87, 89–95 (2014). https://doi.org/10.1016/J.IJMACHTOOLS.2014.08.001

    Article  Google Scholar 

  13. Mutilba, U., Gomez-Acedo, E., Sandá, A., Vega, I., Yagüe-Fabra, J.A.: Uncertainty assessment for on-machine tool measurement: an alternative approach to the ISO 15530-3 technical specification. Precis. Eng. (2019). https://doi.org/10.1016/J.PRECISIONENG.2019.03.005

    Article  Google Scholar 

  14. Florussen, G.H.J., Spaan, H.A.M., Spaan-Burke, T.M.: Verifying the accuracy of five-axis machine tool focused on kinematic ISO tests using a torus-shaped test work piece. Procedia Manuf. 14, 58–65 (2017). https://doi.org/10.1016/J.PROMFG.2017.11.007

    Article  Google Scholar 

  15. Florussen, G.H.J., Spaan, H.A.M.: Dynamic R-test for rotary tables on 5-axes machine tools. Procedia CIRP 1, 536–539 (2012). https://doi.org/10.1016/J.PROCIR.2012.04.095

    Article  Google Scholar 

  16. Brecher, C., Behrens, J., Klatte, M., Lee, T.H., Tzanetos, F.: Measurement and analysis of thermo-elastic deviation of five-axis machine tool using dynamic R-test. Procedia CIRP 77, 521–524 (2018). https://doi.org/10.1016/J.PROCIR.2018.08.244

    Article  Google Scholar 

  17. Theissen, N., Laspas, T., Szipka, K., Archenti, A.: Virtual machining system simulator: analysis of machine tool accuracy. Procedia Manuf. 25, 338–343 (2018). https://doi.org/10.1016/J.PROMFG.2018.06.101

    Article  Google Scholar 

  18. Fujishima, M., Ohno, K., Nishikawa, S., Nishimura, K., Sakamoto, M., Kawai, K.: Study of sensing technologies for machine tools. CIRP J. Manuf. Sci. Technol. 14, 71–75 (2016). https://doi.org/10.1016/j.cirpj.2016.05.005

    Article  Google Scholar 

  19. Augste, J., Holub, M., Knoflíček, R., Novotny, T., Vyroubal, J.: Monitoring of energy flows in the production machines. In: Mechatronics 2013, pp. 1–7. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-02294-9-1. Recent Technol. Sci. Adv

Download references

Acknowledgment

These results were obtained with financial support of the Faculty of Mechanical Engineering, Brno University of Technology (grant no. FSI-S-17-4477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Holub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holub, M., Tuma, Z., Kroupa, J., Kovar, J., Blecha, P. (2020). Case Study of Digitization of the Production Cell. In: Durakbasa, N., Gençyılmaz, M. (eds) Proceedings of the International Symposium for Production Research 2019. ISPR ISPR 2019 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31343-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31343-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31342-5

  • Online ISBN: 978-3-030-31343-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics