Skip to main content

Quantitative Verification of Numerical Stability for Kalman Filters

  • Conference paper
  • First Online:
Formal Methods – The Next 30 Years (FM 2019)

Abstract

Kalman filters are widely used for estimating the state of a system based on noisy or inaccurate sensor readings, for example in the control and navigation of vehicles or robots. However, numerical instability may lead to divergence of the filter, and establishing robustness against such issues can be challenging. We propose novel formal verification techniques and software to perform a rigorous quantitative analysis of the effectiveness of Kalman filters. We present a general framework for modelling Kalman filter implementations operating on linear discrete-time stochastic systems, and techniques to systematically construct a Markov model of the filter’s operation using truncation and discretisation of the stochastic noise model. Numerical stability properties are then verified using probabilistic model checking. We evaluate the scalability and accuracy of our approach on two distinct probabilistic kinematic models and several implementations of Kalman filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Math - Commons-Math: The Apache Commons Mathematics Library. http://commons.apache.org/math/

  2. Anderson, B., Moore, J.: Optimal Filtering. Dover Books on Electrical Engineering. Dover Publications, New York (2012)

    Google Scholar 

  3. Bar-Shalom, Y.: Tracking and Data Association. Academic Press Professional Inc., San Diego (1987)

    MATH  Google Scholar 

  4. Bar-Shalom, Y., Li, X.R.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001). https://doi.org/10.1002/0471221279

    Book  Google Scholar 

  5. Battin, R.H.: Astronautical Guidance. McGraw-Hill, New York (1964). Electronic sciences

    Google Scholar 

  6. Bertsekas, D., Tsitsiklis, J.: Introduction to Probability. Athena Scientific, Athena Scientific optimization and computation series (2008)

    Google Scholar 

  7. Bierman, G.J.: Factorization Methods for Discrete Sequential Estimation (1977)

    Google Scholar 

  8. Bucy, R.S., Joseph, P.D.: Processes with Applications to Guidance. Interscience Publishers, New York (1968)

    MATH  Google Scholar 

  9. Carlson, N.A.: Fast triangular formulation of the square root filter. AIAA J. 11(9), 1259–1265 (1973). https://doi.org/10.2514/3.6907

    Article  Google Scholar 

  10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_3

    Chapter  Google Scholar 

  11. Gibbs, B.P.: Advanced Kalman Filtering, Least Squares and Modeling: A Practical Handbook. Wiley, New York (2011). https://doi.org/10.1002/9780470890042

    Book  Google Scholar 

  12. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using MATLAB, 4th edn. Wiley-IEEE Press, New York (2014)

    MATH  Google Scholar 

  13. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994). https://doi.org/10.1007/BF01211866

    Article  MATH  Google Scholar 

  14. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous univariate distributions. Wiley, New York (1994)

    MATH  Google Scholar 

  15. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  16. Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME J. Basic Eng. 82, 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  17. Kaminski, P., Bryson, A., Schmidt, S.: Discrete square root filtering: a survey of current techniques. IEEE Trans. Autom. Control 16(6), 727–736 (1971). https://doi.org/10.1109/TAC.1971.1099816

    Article  Google Scholar 

  18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  19. Li, X.R., Jilkov, V.P.: Survey of maneuvering target tracking part. i. dynamic models. IEEE Trans. Aerosp. Electron. Syst. 39(4), 1333–1364 (2003). https://doi.org/10.1109/TAES.2003.1261132

    Article  Google Scholar 

  20. Maybeck, P.S.: Stochastic Models, Estimation, and Control: Mathematics in Science and Engineering, vol. 1. Elsevier Science, Burlington (1982)

    MATH  Google Scholar 

  21. Moulin, M., Gluhovsky, L., Bendersky, E.: Formal verification of maneuvering target tracking. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2003). https://doi.org/10.2514/6.2003-5716

  22. R. Gamboa, J. Cowles, J.V.B.: On the verification of synthesized kalman filters. In: 4th International Workshop on the ACL2 Theorem Prover and Its Applications (2003)

    Google Scholar 

  23. Roşu, G., Venkatesan, R.P., Whittle, J., Leuştean, L.: Certifying optimality of state estimation programs. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 301–314. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_30

    Chapter  Google Scholar 

  24. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley, New York (2006)

    Book  Google Scholar 

  25. Whittle, J., Schumann, J.: Automating the implementation of kalman filter algorithms. ACM Trans. Math. Softw. 30(4), 434–453 (2004). https://doi.org/10.1145/1039813.1039816

    Article  MathSciNet  MATH  Google Scholar 

  26. Zarchan, P., Musoff, H.: Fundamentals of Kalman filtering : A Practical Approach, 4th edn. American Institute of Aeronautics and Astronautics, Reston (2015)

    Book  Google Scholar 

  27. Supporting material. www.prismmodelchecker.org/files/fm19kf/

Download references

Acknowledgements

This work has been partially supported by an EPSRC-funded Ph.D. studentship (award ref: 1576386) and the PRINCESS project (contract FA8750-16-C-0045) funded by the DARPA BRASS programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Evangelidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Evangelidis, A., Parker, D. (2019). Quantitative Verification of Numerical Stability for Kalman Filters. In: ter Beek, M., McIver, A., Oliveira, J. (eds) Formal Methods – The Next 30 Years. FM 2019. Lecture Notes in Computer Science(), vol 11800. Springer, Cham. https://doi.org/10.1007/978-3-030-30942-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30942-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30941-1

  • Online ISBN: 978-3-030-30942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics