Skip to main content

Intelligent Functional Electrical Stimulation

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 170))

Abstract

Functional Electrical Stimulation (FES) holds the premises to artificially control the musculoskeletal system aiming to improve quality of life in e.g. multiple sclerosis patients, or to provide targeted rehabilitation in e.g. stroke patients. Besides some neuromuscular stimulators which are widely used within FES clinics (e.g. Odstock Drop Foot Stimulator to correct foot drop in poststroke rehabilitation), some other FES-based control strategies e.g. to restore gait in paraplegia, are still under intensive research. The proposed chapter will shortly review the FES-based applications in neurorehabilitation and then will focus on current research that aims to artificially control the human body muscles by means of FES in order to, e.g. restore gait in paraplegia, improve neurorehabilitation in stroke patients, as well as the new trends to combine FES with hand and arm orthoses and Brain-Computer Interface (BCI).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. 2017 Spinal Cord Injury Statistics: On-line reference (2018). https://www.spinalcord.com. Accessed on 11 April 2018

  2. Abboud, H., Hill, E., Siddiqui, J., Serra, A., Walter, B.: Neuromodulation in multiple sclerosis. Multiple Sclerosis J. 23(13), 1663–1676 (2017)

    Article  Google Scholar 

  3. Ang, K.K., Guan, C., Chua, K.S.G., Ang, B.T., Kuah, C., Wang, C., et al.: A clinical study of motor imagerybased brain-computer interface for upper limb robotic rehabilitation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 5981–5984 (2009)

    Google Scholar 

  4. Balasubramanian, S., He, J.P.: Adaptive control of a wearable exoskeleton for upper-extremity neurorehabilitation. Appl. Bion. Biomech. 9(1), 99–115 (2012). https://doi.org/10.3233/ABB-2011-0041

    Article  Google Scholar 

  5. Bissolotti, L., Villafane, J.H., Gaffurini, P., Orizio, C., Valdes, K., Negrini, S.: Changes in skeletal muscle perfusion and spasticity in patient with poststroke hemiparesis treated by robotic assistance (Gloreha) of the hand. Phys. Ther. Sci. 28, 769–773 (2016)

    Article  Google Scholar 

  6. Côté, M.: PA: Mapping of the human upper arm muscle activity with an electrode matrix. Electromyogr. Clin. Neurophysiol. 40(4), 215–223 (2000)

    Google Scholar 

  7. Daly, J.J., Cheng, R., Rogers, J., Litinas, K., Hrovat, K., Dohring, M.: Feasibility of a new application of noninvasive brain-computer interface (BCI): A case study of training for recovery of volitional motor control after stroke. J. Neurol. Phys. Therapy 33, 203–2011 (2009)

    Article  Google Scholar 

  8. del-Ama, A.J., Gil-Agudo, Á., Pons, J., Moreno, J.: Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J. Neuroeng. Rehabil. 11, 27 (2014)

    Article  Google Scholar 

  9. Dingguo, Z., Yong, R., Kai, G., Jie, J., Wendong, X.: Cooperative control for a hybrid rehabilitation system combining functional electrical stimulation and robotic exoskeleton. Front. Neurosci. 11, 725 (2017)

    Article  Google Scholar 

  10. Do, A.H., Wang, P.T., King, C.E., Abiri, A., Nenadic, Z.: Brain-Computer Interface controlled functional electrical stimulation system for ankle movement. J. NeuroEng. Rehabil. 8, 49 (2011)

    Article  Google Scholar 

  11. Dolan, M., Andrews, B., Veltink, P.H.: Switching curve controller for FES assisted standing up and sitting down. IEEE Trans. Rehabil. Eng. 6, 167–171 (1998)

    Article  Google Scholar 

  12. Donaldson, N.N., Yu, C.H.: FES standing control by handle reactions of leg muscle stimulation (CHRELMS). IEEE Trans. Rehabil. Eng. 4, 280–284 (1996)

    Article  Google Scholar 

  13. Downey, R.J., Cheng, T.H., Bellman, M.J., Dixon, W.E.: Switched tracking control of the lower limb during asynchronous neuromuscular electrical stimulation: theory and experiments. IEEE Trans. Cybern. 47(5), 1251–1262 (2017). https://doi.org/10.1109/TCYB.2016.2543699

    Article  Google Scholar 

  14. Eraife, J., Clark, W., France, B., Desando, S., Moore, D.: Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Syst. Rev. 6, 40 (2017). https://doi.org/10.1186/s13643-017-0435-5

    Article  Google Scholar 

  15. Ethiera, C., Miller, L.: Brain-controlled muscle stimulation for the restoration of motor function. Neurobiol. Dis. 83(180–190), 2015 (2015). https://doi.org/10.1016/j.nbd.2014.10.014

    Article  Google Scholar 

  16. Fatone, S.: A review of the literature pertaining to KAFOs and HKAFOs for ambulation. J. Prosthet. Orthot. 18(3), 137–168 (2006)

    Article  Google Scholar 

  17. Fuhr, T., Quintern, J., Riener, R., Schmidt, G.: Assisting locomotion in patients with paraplegia. Control of WALK!—a cooperative patient driven neuroprosthetic system. IEEE EMBS Mag. 27, 38–48 (2008)

    Google Scholar 

  18. Grigoras, V.-A., Irimia, D.C., Poboroniuc, M.S., Popescu, C.D.: Testing of a hybrid FES-robot assisted hand motor training program in sub-acute stroke survivors. Adv. Electr. Comput. Eng. 16(4), 89–94 (2016). ISSN: 1582-7445, e-ISSN: 1844-7600, https://doi.org/10.4316/aece.2016.04014

    Article  Google Scholar 

  19. Grosse-Wentrup, M., Mattia, D., Oweiss, K.: Using brain–computer interfaces to induce neural plasticity and restore function. J. Neural Eng. 8(2), 025004 (2011)

    Article  Google Scholar 

  20. Hartopanu, S., Poboroniuc, M.S., Serea, F., Irimia, D.C., Livint, G.: New issues on FES and robotic glove device to improve the hand rehabilitation in stroke patients. In: Proceedings of 6th International Conference on Modern Power System 2015. Acta Electrotehnica 56(3), 123–127 (2015). ISSN: 1841-3323, ISSN: 2344-5637

    Google Scholar 

  21. Hatem, S., Saussez, G., della Faille, M., Prist, V., Zhang, X.: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Human Neurosci. 10, 442 (2016)

    Article  Google Scholar 

  22. Irimia, D., Sabathiel, N., Ortner, R., Poboroniuc, M., Coon, W., Allison, B.Z., Guger, C.: recoveriX: a new BCI-based technology for persons with stroke. In: 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 08/2016, p. 1 (2016)

    Google Scholar 

  23. Irimia, D.C., Cho, W., Ortner, R., Allison, B.Z., Ignat, B.E., et al.: Brain-computer interfaces with multi-sensory feedback for stroke rehabilitation: a case study. Artif. Organs 41, E178–E184 (2017). https://doi.org/10.1111/aor.13054

    Article  Google Scholar 

  24. Irimia, D.C., Poboroniuc, M.S., Ortner, R., Allison, B.Z., Guger, C.: Preliminary results of testing a BCIcontrolled FES system for post-stroke rehabilitation. In: Proceedings of the 7th Graz Brain-Computer Interface Conference, Graz, Austria, 18–22 Sept 2017

    Google Scholar 

  25. Irimia, D,, Poboroniuc, M., Serea, F., Baciu, A., Olaru, R.: Controlling a FES-EXOSKELETON rehabilitation system by means of brain-computer interface. In: International Conference and Exposition on Electrical and Power Engineering, pp. 352–355 (2016). https://doi.org/10.1109/icepe.2016.7781361

  26. Jang, S.H., You, S.H., Hallett, M., Cho, Y.W., Park, C.M., et al.: Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch. Phys. Med. Rehabil. 86, 2218–2223 (2005). https://doi.org/10.1016/j.apmr.2005.04.015

    Article  Google Scholar 

  27. Jarosz, R., Littlepage, M., Creasey, G., McKenna, S.: Functional electrical stimulation in spinal cord injury respiratory care. Top Spinal Cord Inj. Rehabil. 18(4), 315–321 (2012). https://doi.org/10.1310/sci1804-315

    Article  Google Scholar 

  28. Kern, H.: Electrical stimulation on paraplegic patients. Eur. J. Trans. Myol. Basic Appl. Myol. 24(2), 75157 (2014)

    Google Scholar 

  29. Kilgore, K.L., Peckham, H., Keith, M.W., et al.: An implanted upper-extremity neuroprosthesis. J. Bone Joint Surg. 79, 533–541 (1997)

    Article  Google Scholar 

  30. Ko, E.J., Sun, I.Y., Yun, G.J., Kang, J., Kim, J.Y., Kim, G.E.: Effects of lateral electrical surface stimulation on scoliosis in children with severe cerebral palsy: a pilot study. Disability Rehabil. 40(2), 192–198 (2018)

    Article  Google Scholar 

  31. Krebs, H.I., Volpe, B.T.: Rehabilitation robotics. Handb. Clin. Neurol. 110, 283–294 (2013). https://doi.org/10.1016/b978-0444-52901-5.00023-x

    Article  Google Scholar 

  32. Kutlu, M., Freeman, C.T., Hallewell, E., Hughes, A.-M., Laila, D.S.: Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations. Med. Eng. Phys. 38, 366–379 (2016)

    Article  Google Scholar 

  33. Kyung-Hoon, Y., Kwon-Young, K.: Functional electrical stimulation with augmented feedback training improves gait and functional performance in individuals with chronic stroke: a randomized controlled trial. J. Kor. Phys. Ther. 29(2), 74–79 (2017). https://doi.org/10.18857/jkpt.2017.29.2.74

    Article  Google Scholar 

  34. Li, Z., Guiraud, D., Andreu, D., Benoussaad, M., Fattal, C., Hayashibe, M.: Real-time estimation of FES-induced joint torque with evoked EMG. Application to spinal cord injured patients. J. Neuroeng Rehabil. 13, 60 (2016)

    Article  Google Scholar 

  35. Liberson, W.T., Holmquest, H.J., Scott, D., et al.: Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42, 101 (1961)

    Google Scholar 

  36. Liu, Y., Wang, H., Zhao, W., Zhang, M., Hongbo, Q., et al.: Flexible, stretchable sensors for wearable health monitoring: sensing mechanisms, materials, fabrication strategies and features. Sensors 18(2), 645 (2018)

    Article  Google Scholar 

  37. Lupu, R.G., Irimia, D.C., Ungureanu, F., Poboroniuc, M.S., Moldoveanu, A.: BCI and FES based therapy for stroke rehabilitation using VR facilities. Hindawi Wireless Commun. Mobile Comput. 2018, 8 (2018). Article ID 4798359. https://doi.org/10.1155/2018/4798359

    Article  Google Scholar 

  38. Mattia, D., Pichiorri, F., Molinari, M., Rupp, R.: Part II: devices, applications and users brain computer interface for hand motor function restoration and rehabilitation. In: Allison, Z.B., Dunne, S., Leeb, R., Del, J., Millan, R., Nijholt, A. (Eds.) Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications, pp. 131–53. Springer, Berlin (2013)

    Google Scholar 

  39. Mazzoleni, S., Duret, C., Gaëlle, A., Grosmaire, E.B.: Combining upper limb robotic rehabilitation with other therapeutic approaches after stroke: current status, rationale and challenges. Biomed. Res. Int. 2017, 8905637 (2017). https://doi.org/10.1155/2017/8905637

    Article  Google Scholar 

  40. Miller, L., McFadyen, A., Lord, A., Hunter, R., Paul, L., Rafferty, D., Bowers, R., Mattison, P.: Functional electrical stimulation for foot drop in multiple sclerosis: a systematic review and meta-analysis of the effect on gait speed. Arch. Phys. Med. Rehabil. 98(7), 1435–1452 (2017)

    Article  Google Scholar 

  41. Mulder, A.J., Veltink, P.H., Boom, H.B.K.: On/off control in FES-induced standing up: a model study and experiments. Med. Biol. Eng. Comput. 30, 205–212 (1992)

    Article  Google Scholar 

  42. Multiple Sclerosis by the Numbers: Facts, statistics, and you, on-line reference (2018). https://www.healthline.com/health/multiple-sclerosis/facts-statistics-infographic#1. Accessed on 11 April 2018

  43. NHS (UK), Interventional procedure guidance 278: Functional electrical stimulation for drop foot of central neurological origin. National Institute for Health and Clinical Excellence (NHS) (2009). ISBN 1-84629-846-6

    Google Scholar 

  44. O’Dwyer, S.B., O’Keeffe, D.T., Coote, S., Lyons, G.M.: An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. Med. Eng. Phys. 28, 166–176 (2006)

    Article  Google Scholar 

  45. Ortner, R., Irimia, D.C., Scharinger, J., Guger, C.: A motor imagery based brain-computer interface for stroke rehabilitation. Stud. Health Technol. Inform. 181, 319–323 (2012)

    Google Scholar 

  46. Poboroniuc, M.: Current status and future prospects for FES-based control of standing and walking in paraplegia. In: 3rd International Conference on Electrical and Power Engineering EPE2004, Bulletin of the Polytechnic Institute of Iasi, tom L (LIV), Fasc.5A, Iasi, Romania, pp. 21–32, 7–8 Oct 2004. ISSN 1223-8139

    Google Scholar 

  47. Poboroniuc, M., Wood, D.E., Riener, R., Donaldson, N.N.: A new controller for FES-assisted sitting down in paraplegia. Adv. Electr. Comput. Eng. 10(4), 9–16 (2010). https://doi.org/10.4316/aece.2010.04002

    Article  Google Scholar 

  48. Poboroniuc, M.S., Irimia, D.C., Poboroniuc, I.C., Curteza, A., Macovei, L., et al.: Manufacturing and clinically testing embedded electrodes in knitted textiles for neurorehabilitation. In: Proceedings of 2017 International Conference on Electromechanical and Power Systems (SIELMEN), pp. 68–73 (2017). https://doi.org/10.1109/sielmen.2017.8123294

  49. Poboroniuc, M.S., Irimia, D.C.: FES&BCI based rehabilitation engineered equipment: clinical tests and perspectives. In: E-Health and Bioengineering Conference (EHB), pp 1–6 (2017). https://doi.org/10.1109/ehb.2017.7995365

  50. Poegge, L.S., Tosi, D., Duraibabu, D.B., Leen, G., McGrath, D., Lewis, E.: Optical fibre pressure sensors in medical applications. Sensors 15(7), 17115–17148 (2015)

    Article  Google Scholar 

  51. Popović, D.: Advances in functional electrical stimulation (FES). J. Electromyogr. Kinesiol. 24(6), 795–802 (2014). https://doi.org/10.1016/j.jelekin.2014.09.008

    Article  MathSciNet  Google Scholar 

  52. Prasad, G., Herman, P., Coyle, D., McDonough, S., Crosbie, J.: Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. Neuroeng. Rehabil. 7, 60 (2010)

    Article  Google Scholar 

  53. Prosser, L., Curatalo, L.A., Alter, K.E., Damiano, D.L.: Acceptability and potential effectiveness of a foot drop stimulator in children and adolescents with cerebral palsy. Dev. Med. Child Neurol. 54(11), 1044–1049 (2013)

    Article  Google Scholar 

  54. Riener, R., Fuhr, T.: Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans. Rehabil. Eng. 6, 113–124 (1998)

    Article  Google Scholar 

  55. Riener, R., Ferrarin, M., Pavan, E., Frigo, C.: Patient-driven control of FES-supported standing up and sitting down: experimental results. IEEE Trans. Rehabil. Eng. 8, 523–529 (2000)

    Article  Google Scholar 

  56. Riener, R., Nef, T., Colombo, G.: Robot-aided neurorehabilitation of the upper extremities. Med. Biol. Eng. Comput. 43, 2–10 (2005). https://doi.org/10.1007/BF02345116

    Article  Google Scholar 

  57. Sabatini, A.M.: Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 11(2), 1489–1525 (2011)

    Article  MathSciNet  Google Scholar 

  58. Sadowsky, C., Edward, R., Strohl, H., Commean, A., Eby, P., et al.: Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J. Spinal Cord Med. 36(6), 623–631 (2013). https://doi.org/10.1179/2045772313y.0000000101

    Article  Google Scholar 

  59. Serea, F., Poboroniuc, M.S., Hartopanu, S., Irimia, D.: Towards clinical implementation of an FES&Exoskeleton to rehabilitate the upper limb in disabled patients. In: Proceedings of International Conference on Control Systems and Computer Science (CSCS), pp. 827–832 (2015). https://doi.org/10.1109/cscs.2015.114

  60. Shindo, K., Kawashima, K., Ushiba, J., Ota, N., Ito, M., Ota, T., et al.: Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J. Rehabil. Med. 43(10), 951–957 (2011)

    Article  Google Scholar 

  61. Silvoni, S., Ramos-Murguialday, A., Cavinato, M., et al.: Braincomputer interface in stroke: a review of progress. Clin. EEG Neurosci. 42, 245–252 (2011)

    Article  Google Scholar 

  62. Singh, A., Tetreault, L., Kalsi-Ryan, S., Nouri, A., Fehlings, M.: Global prevalence and incidence of traumatic spinal cord injury. Clin. Epidemiol. 6, 309–331 (2014)

    Google Scholar 

  63. Sinkjær, T., Haugland, M., Inmann, A., Hansen, M., Nielsen, D.K.: Biopotentials as command and feedback signals in functional electrical stimulation systems. Med. Eng. Phys. 25(1), 29–40 (2003)

    Article  Google Scholar 

  64. Smith, B.T., Mulcahey, M.J., Betz, R.R.: An implantable upper extremity neuroprosthesis in a growing child with a C5 spinal cord injury. Spinal Cord 39(2), 118–123 (2001)

    Article  Google Scholar 

  65. Snoek, G.J., Ijzerman, M.J., Groen, F., et al.: Use of the NESS Handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients. Spinal Cord 38, 244–249 (2000). https://doi.org/10.1038/sj.sc.3100980

    Article  Google Scholar 

  66. Son, B.C., Kim, D.-R., Kim, Y., Hong, J.T.: Phrenic Nerve Stimulation for Diaphragm Pacing in a Quadriplegic Patient. J Korean Neurosurg Soc. 54(4), 359–362 (2013)

    Article  Google Scholar 

  67. Stein, J., Narendran, K., McBean, J., et al.: Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. Am. J. Phys. Med. Rehabil. 86, 255–261 (2007)

    Article  Google Scholar 

  68. Stein, R.B., Everaert, D.G., Thompson, A.K., Chong, S.L., Whittaker, M., et al.: Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil. Neural Repair 24(2), 152–167 (2010). https://doi.org/10.1177/1545968309347681

    Article  Google Scholar 

  69. Stroke Statistics: On-line reference (2018). http://www.strokecenter.org/patients/about-stroke/stroke-statistics/. Accessed on 11 April 2018

  70. Sukhvinder, K.-R., Verrier, M.: A synthesis of best evidence for the restoration of upper-extremity function in people with tetraplegia. Physiother. Can. 63(4), 474–489 (2011)

    Article  Google Scholar 

  71. Taylor, P.N., Wilkinson Hart, I.A., Khan, M.S., et al.: Correction of footdrop due to multiple sclerosis using the STIMuSTEP implanted dropped foot stimulator. Int. J. MS Care 18, 239–247 (2016)

    Article  Google Scholar 

  72. Taylor, P., Barrett, C., Mann, G., et al.: A feasibility study to investigate the effect of functional electrical stimulation and physiotherapy exercise on the quality of gait of people with multiple sclerosis. Neuromodulation 17(1), 75–84 (2014)

    Article  Google Scholar 

  73. Taylor, P., Esnouf, J., Hobby, J.: Pattern of use and user satisfaction of neuro control freehand system. Spinal Cord 39, 156–160 (2001). https://doi.org/10.1038/sj.sc.3101126

    Article  Google Scholar 

  74. Taylor, P.N., Burridge, J.H., Dunkerley, A.L., Wood, D.E., Norton, J.A., et al.: Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch. Phys. Med. Rehabil. 80(12), 157783 (1999)

    Article  Google Scholar 

  75. Tu, X.K., Zhou, X., Li, J.X., Su, C., Sun, X.T., et al.: Iterative learning control applied to a hybrid rehabilitation exoskeleton system powered by PAM and FES. Cluster Comput. J. Networks Softw. Tools Appl, 20(4), 2855–2868 (2017)

    Google Scholar 

  76. Turk, R., Burridge, J., Davis, R., Cosendai, G., Sparrow, O.: Therapeutic effectiveness of electric stimulation of the upper-limb poststroke using implanted microstimulators. Arch. Phys. Med. Rehabil. 89, 1913–1922 (2008). https://doi.org/10.1016/j.apmr.2008.01.030

    Article  Google Scholar 

  77. Van den Brand, R., Heutschi, J., Barraud, Q., DiGiovanna, J., Bartholdi, K., et al.: Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336(6085), 1182–1185 (2012)

    Article  Google Scholar 

  78. Wood, D.E., Harper, V.J., Barr, F.M.D., Taylor, P.N., Phillips, G.F., et al.: Experience in using knee angles as part of a closed-loop algorithm to control FES-assisted paraplegic standing. In: Proceedings of 6th International Workshop on FES: Basics, Technology and Application, Vienna, Austria, pp. 137–140 (1998)

    Google Scholar 

  79. Xu, R., Jiang, N., Mrachacz-Kersting, N., et al.: A closed-loop brain-computer interface triggering an active anklefoot orthosis for inducing cortical neural plasticity. IEEE Trans. Biomed. Eng. 61, 2092–2101 (2014)

    Article  Google Scholar 

  80. Young, B.M., Nigogosyan, Z., Nair, V.A., Walton, L.M., Song, J., Tyler, M.E., Edwards, D.F., Caldera, K., Sattin, J.A., Williams, J.C., Prabhakaran, V.: Case report: post-stroke interventional BCI rehabilitation in an individual with preexisting sensorineural disability. Front. Neuroeng. 7, 18 (2014). https://doi.org/10.3389/fneng.2014.00018

    Article  Google Scholar 

Additional Reading Section (Resource List)

  1. Chang, S.N., Nijholt, A., Lotte, F. (eds.): Brain-Computer Interfaces Handbook: Technological and Theoretical Advances. Boca Raton, CRC Press (2018). ISBN 978-1-498-77343-0

    Google Scholar 

  2. Chapin, J.K., Moxon, K.A. (eds.): Neural Prostheses for Restoration of Sensory and Motor Function. CRC Press, Boca Raton (2001). ISBN 0-8493-2225-1

    Google Scholar 

  3. Diez, P. (ed.): Smart Wheelchairs and Brain-Computer Interfaces. Academic Press, London (2018). ISBN 978-0-12-812892-3

    Google Scholar 

  4. De Horch, K.W., Dhillon, G.S. (eds.): Neuroprosthetics: Theory and Practice. Series on Bioengineering & Biomedical Engineering, vol. 2. World Scientific Publishing Co. Pte. Ltd., Singapore (2004). ISBN 981-238-022-1

    Google Scholar 

  5. DiLorenzo, D.J., Bronzino, J.D. (eds.): Neuroengineering. CRC Press, Boca Raton (2008). ISBN 978-0-8493-8174-4

    Google Scholar 

  6. Fazel, R. (ed.): Recent Advances in Brain-Computer Interface Systems. IntechOpen (2011). ISBN 978–953-307-175-6

    Google Scholar 

  7. Finn, W.E., LoPresti, P.G. (eds.): Handbook of Neuroprosthetic Methods. CRC Press, Boca Raton (2003). ISBN 0-8493-1100-4

    Google Scholar 

  8. Freeman, C.: Control System Design for Electrical Stimulation in Upper Limb Rehabilitation: Modelling, Identification and Robust Performance. Springer, Heidelberg (2016)

    Book  Google Scholar 

  9. Garcia, B.M. (ed.): Motor Imagery: Emerging Practices, Role in Physical Therapy and Clinical Implications. Nova Science Publication, Inc., New York (2015). ISBN 978-1-63483-163-5

    Google Scholar 

  10. Graimann, B., Brendan, A., Pfurtscheller, G. (eds.): Brain-Computer Interfaces: Revolutionizing Human-Computer Interacation (The Frontiers Collection). Springer, Berlin (2010). ISBN 978-3-642-02090-2

    Google Scholar 

  11. Kilgore, K. (ed.): Implantable Neuroprostheses for Restoring Function. Elsevier Ltd., Amsterdam, Boston (2015). ISBN 978-1-78242-101-6

    Google Scholar 

  12. Kralj, A., Bajd, T.: Functional Electrical Stimulation: Standing and walking After Spinal Cord Injury. CRC Press, Boca Raton (1989). ISBN 0-8493-4529-4

    Google Scholar 

  13. Krames, E.S., Peckham, P.H., Rezai, A.R. (eds.): Neuromodulation: Comprehensive Textbook of Principles, Technologies, and Therapies, vol. 1, 2nd edn. Elsevier Ltd., London (2018). ISBN 978-0-12-802766-0

    Google Scholar 

  14. Levi, T., Bonifazi, P., Massobrio, P., Chiappalone, M. (Eds): Closed-loop systems for next generation neuroprostheses. Frontiers (2018). ISBN 978-2-88945-466-2

    Google Scholar 

  15. Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, New York (1995)

    Book  Google Scholar 

  16. Niedermeyer, E., da Silva, F.L., (eds.): Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins (2005). ISBN 978-0-7817-5126-1

    Google Scholar 

  17. Phillips, C.A.: Functional Electrical Rehabilitation: Technological Restoration after Spinal Cord Injury. Springer, Berlin (1991). ISBN 978-1-4612-7796-5

    Book  Google Scholar 

  18. Popovic, D., Sinkjaer, T.: Control of Movement for the Physically Disabled. Springer, Berlin (2000). ISBN 978-1-4471-1141-2

    Book  Google Scholar 

  19. Sandrini, G., Homberg, V., Saltuari, L., Smania, N., Pedrocchi, A.: Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Biosystems & Biorobotics. Springer International Publishing AG, Berlin (2018). ISBN 978-3-319-72735-6

    Book  Google Scholar 

  20. Schalk, G., Mellinger, J. (eds.): A Practical Guide to Brain-Computer Interfacing with BCI2000. Springer, London (2010). ISBN 978-1-84996-091-5

    Google Scholar 

  21. Vuckovic, A., Pineda, J., Lamarca, K., Gupta, D., Guger, C. (eds.): Interaction of BCI with the Underlying Neurological Conditions in Patients: Pros and Cons. Frontiers Media SA, Lausanne (2015). ISBN 978-2-88919-489-6

    Google Scholar 

  22. Wolpaw, J.R., Wolpaw, E.W. (eds.): Brain-Computer Interfaces: Principles and Practice. Oxford University Press, Oxford (2012). ISBN 978-0-195-38885-5

    Google Scholar 

  23. Yu, W., Chattopadhyay, S., Lim, T.-C., Acharya, U.R.: Advances in Therapeutic Engineering. CRC Press, Boca Raton (2013). ISBN 978-1-4398-7174-4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian-Silviu Poboroniuc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poboroniuc, MS., Irimia, DC. (2020). Intelligent Functional Electrical Stimulation. In: Costin, H., Schuller, B., Florea, A. (eds) Recent Advances in Intelligent Assistive Technologies: Paradigms and Applications. Intelligent Systems Reference Library, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-030-30817-9_3

Download citation

Publish with us

Policies and ethics