Skip to main content

Quantitative Thermal Transport Measurements in Nanostructures

  • Chapter
  • First Online:
Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 206 Accesses

Abstract

Based on the experimental and analytical framework developed in the previous chapter, we develop here the requirements needed for quantitative comparison and estimation of thermal properties. Using an analytical model for the thermal spreading resistance in the sample, quantities such as thermal conductivity and interface thermal resistance can be deduced from SThM measurements. We apply similar models to relatively simple samples, oxide layers on silicon substrates to demonstrate the principles underlying these models. Finally, metal covered block copolymers thin films are mapped and their thermal resistances measured to extract effective thermal conductivities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yovanovich MM, Culham JR, Teertstra P (1998) IEEE Trans Compon Packag Manuf Technol: Part A 21:168–176

    Google Scholar 

  2. Muzychka YS (2014) J Thermophys Heat Transf 28:313–319

    Google Scholar 

  3. Assy A, Gomes S (2015) Nanotechnology 26:355401

    Article  Google Scholar 

  4. Muzychka YS, Yovanovich MM, Culham JR (2004) J Thermophys Heat Transf 18:45–51

    Google Scholar 

  5. Menges F, Riel H, Stemmer A, Dimitrakopoulos C, Gotsmann B (2013) Phys Rev Lett 111:205901

    Google Scholar 

  6. Al Mohtar A, Tessier G, Ritasalo R, Matvejeff M, Stormonth-Darling J, Dobson P, Chapuis P, Gomes S, Roger J (2017) Thin Solid Films 642:157–162

    Article  ADS  Google Scholar 

  7. Chien H-C, Yao D-J, Huang M-J, Chang T-Y (2008) Rev Sci Instrum 79:054902

    Google Scholar 

  8. Zhu J, Tang D, Wang W, Liu J, Holub KW, Yang R (2010) J Appl Phys 108:094315

    Google Scholar 

  9. Muzychka YS, Sridhar MR, Yovanovich MM, Antonetti VW (1999) J Thermophys Heat Transf 13:489–494

    Google Scholar 

  10. Glassbrenner C, Slack GA (1964) Phys Rev 134:A1058

    Google Scholar 

  11. Dryden J (1983) J Heat Transf 105:408–410

    Google Scholar 

  12. Liu J, Ju S, Ding Y, Yang R (2014) Appl Phys Lett 104:153110

    Google Scholar 

  13. Jakubinek MB, White MA, Mu M, Winey KI (2010) Appl Phys Lett 96:083105

    Google Scholar 

  14. Juangsa FB, Muroya Y, Ryu M, Morikawa J, Nozaki T (2016) J Phys D: Appl Phys 49:365303

    Google Scholar 

  15. Lysenkov E, Klepko V (2015) J Eng Phys Thermophys 88:1008–1014

    Article  ADS  Google Scholar 

  16. Hu C, Kiene M, Ho PS (2001) Appl Phys Lett 79:4121–4123

    Google Scholar 

  17. Zheng K, Sun F, Tian X, Zhu J, Ma Y, Tang D, Wang F (2015) ACS Appl Mater Interfaces 7:23644–23649

    Google Scholar 

  18. Gotsmann B, Lantz MA, Knoll A, Dürig U (2010) Nanotechnology 121–160

    Google Scholar 

  19. Lefèvre S, Volz S, Saulnier J-B, Fuentes C, Trannoy N (2003) Rev Sci Instrum 74:2418–2423

    Google Scholar 

  20. Gomes S, David L, Lysenko V, Descamps A, Nychyporuk T, Raynaud M (2007) J Phys D-Appl Phys 40:6677–6683

    Google Scholar 

  21. Bodzenta J, Juszczyk J, Chirtoc M (2013) Rev Sci Instrum 84:093702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Spièce .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spièce, J. (2019). Quantitative Thermal Transport Measurements in Nanostructures. In: Quantitative Mapping of Nanothermal Transport via Scanning Thermal Microscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-30813-1_4

Download citation

Publish with us

Policies and ethics