Skip to main content

Isoquinoline Alkaloids and Chemotaxonomy

  • Chapter
  • First Online:

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 24))

Abstract

The isoquinoline alkaloids are a class of secondary metabolites classified into different groups, being the aporphinoids the most representative class. They are considered the second-largest class of alkaloids in terms of structural diversity staying behind only of indole alkaloids. The aporphines could be found in the most diverse families of the plant kingdom. Isoquinolines alkaloids have aroused great interest in chemists and pharmacists due to its wide spectrum of biological activities: highlighting dopaminergic and serotonergic, vasodilator, antiplatelet agents, antimicrobial, antiviral, and cytotoxic. Different methods are applied to improve the comprehension about the metabolic pathways of isoquinoline alkaloids biosynthesis. Those approaches contribute to chemotaxonomy: one of the most useful plant classification systems that currently exist. This class of secondary metabolites has been widely reported as chemotaxonomic markers. These technological advances concerning new methodologies and tools are used nowadays to study these chemotaxonomic relationships: since screening the chemical composition of plants extracts through analytical techniques, to the analysis of chemodiversity and chemosystematics allied through reported data in literature. In this chapter, we present the main metabolic pathways involving biosynthesis of some groups of isoquinoline alkaloids, their occurrence in different vegetable families, and a few methods used in the studies of chemotaxonomic relations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahamad J, Naquvi KJ, Ali M, Mir SR (2014) New isoquinoline alkaloids from the stem bark of Berberis aristata. Indian J Chem 53B:1237–1241

    CAS  Google Scholar 

  • Albarracin LT, Delgado WA, Cuca LE, Ávila MC (2017) Chemical constituents of the bark of Endlicheria oreocola (Lauraceae) from Colombia. Biochem Syst Ecol 74:60–62

    Article  CAS  Google Scholar 

  • Alves T, Zani C (1999) New tetrahydroisoquinolinones from Hyeronima oblonga (Euphorbiaceae). Tetrahedron Lett 40:205–208

    Article  CAS  Google Scholar 

  • An TY, Huang RQ, Yang Z, Zhang DK, Li GR, Yao YC, Gao J (2001) Alkaloids from Cynanchum komarovii with inhibitory activity against the tobacco mosaic virus. Phytochemistry 58:1267–1269

    Article  CAS  PubMed  Google Scholar 

  • Barrera EDC, Suárez LEC (2009) Aporphine alkaloids from leaves of Ocotea macrophylla (Kunth)(Lauraceae) from Colombia. Biochem Syst Ecol 37:522–524

    Article  CAS  Google Scholar 

  • Bringmann G, Messer K, Wolf K, Mühlbacher J, Grüne M, Brun R, Louis AM (2002) Dioncophylline E from Dioncophyllum thollonii, the first 7,3′-coupled dioncophyllaceous naphthylisoquinoline alkaloid. Phytochemistry 60:389–397

    Article  CAS  PubMed  Google Scholar 

  • Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Stærk D, Jaroszewski JW, Ndangalasi H, Mbago F, Brun R, Christensen SB (2004) Ancistrotanzanine C and Related 5, 1′-and 7, 3′-Coupled Naphthylisoquinoline Alkaloids from Ancistrocladus tanzaniensis. J Nat Prod 67:743–748

    Article  CAS  PubMed  Google Scholar 

  • Campos FR, Batista RL, Batista CL, Costa EV, Barison A, dos Santos AG, Pinheiro MLB (2008) Isoquinoline alkaloids from leaves of Annona sericea (Annonaceae). Biochem Syst Ecol 36:804–806

    Article  CAS  Google Scholar 

  • Charris J, Domı́nguez J, De la Rosa C, Caro C (2000) (−)-Amuronine from the leaves of Croton flavens L. (Euphorbiaceae). Biochem Syst Ecol 28:795–797

    Article  CAS  PubMed  Google Scholar 

  • Chen IS, Wu SJ, Leu YL, Tsai IW, Wu TS (1996) Alkaloids from root bark of Zanthoxylum simulans. Phytochemistry 42:217–219

    Article  CAS  Google Scholar 

  • Chen IS, Wu SJ, Tsai IL, Wu TS, Pezzuto JM, Lu MC, Chai H, Suh N, Teng CM (1994) Chemical and bioactive constituents from Zanthoxylum simulans. J Nat Prod 57:1206–1211

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gao K, Liu T, Zhao H, Wang J, Wu H, Liu B, Wang W (2013) Aporphine alkaloids: a kind of alkaloids’ extract source, chemical constitution and pharmacological actions in different botany. Asian J Chem 25:10015–10027

    Article  CAS  Google Scholar 

  • Chiu S, Dobberstein R, Fong H, Farnsworth N (1982) Oxoaporphine alkaloids from Siparuna gilgiana. J Nat Prod 45:229–230

    Article  CAS  Google Scholar 

  • Costa EV, Marques FA, Pinheiro MLB, Vaz NP, Duarte MCT, Delarmelina C, Braga RM, Maia BHLS (2009a) 7,7-Dimethylaporphine alkaloids from the stem of Guatteriopsis friesiana. J Nat Prod 72:1516–1519

    Article  CAS  PubMed  Google Scholar 

  • Costa EV, Pinheiro MLB, Marques FA, Braga RM, Maia BHLS (2009b) First report of alkaloids in the genus Guatteriopsis (Annonaceae). Biochem Syst Ecol 37:43–45

    Article  CAS  Google Scholar 

  • Cronquist A (1977) On the taxonomic significance of secondary metabolites in angiosperms. In: Kubitzki K (ed) Flowering plants. Springer, Vienna, pp 179–189

    Chapter  Google Scholar 

  • Da Cunha EVL, Barbosa-Filho JM (2012) Alcaloides derivados do núcleo isoquinolínico. In: Yunes RA, Cechinel-Filho V (Org.) Química de produtos naturais, novos fármacos e a moderna farmacognosia. Editora Univali, pp 291–330

    Google Scholar 

  • De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    Article  PubMed  Google Scholar 

  • De Wet H, Van Heerden FR, Van Wyk BE (2011) Alkaloidal variation in Cissampelos capensis (Menispermaceae). Molecules 16:3001–3009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng X, Zhu L, Fang T, Vimolmangkang S, Yang D, Ogutu C, Liu Y, Han Y (2016) Analysis of isoquinoline alkaloid composition and wound-induced variation in Nelumbo using HPLC-MS/MS. J Agr Food Chem 64:1130–1136

    Article  CAS  Google Scholar 

  • Dewick PM (2002) Medicinal natural products: a biosynthetic approach. Wiley, New York

    Google Scholar 

  • dos Santos AR, Pires C, Marques FA, Lobão AQ, Maia BHL (2017) Isoquinoline alkaloids isolated from three Guatteria species. Biochem Syst Ecol 73:1–2

    Article  CAS  Google Scholar 

  • Dute P, Chalandre MC, Cabalion P, Bruneton J (1988) (+)-auroramine and (+)-maroumine, new seco-bis-benzyl-isoquinoline dimers from Gyrocarpus americanus. Phytochemistry 27:655–657

    Article  CAS  Google Scholar 

  • El Antri A, Messouri I, Bouktaib M, El Alami R, Bolte M, El Bali B, Lachkar M (2004) Isolation and X-ray crystal structure of a new isoquinoline-N-oxide alkaloid from Calycotome villosa subsp. intermedia. Fitoterapia 75:774–778

    Article  PubMed  CAS  Google Scholar 

  • El-Shazly A, Sarg T, Ateya A, Aziz EA, El-Dahmy S, Witte L, Wink M (1996) Pyrrolizidine and tetrahydroisoquinoline alkaloids from Echium humile. Phytochemistry 42:225–230

    Article  CAS  Google Scholar 

  • Erkens RH, Maas PJ (2008) The Guatteria group disentangled: sinking Guatteriopsis, Guatteriella, and Heteropetalum into Guatteria. Rodriguésia 59:401–406

    Article  Google Scholar 

  • Ernst M, Silva DB, Silva RR, Vêncio RZN, Lopes NP (2014) Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep 31:784–806

    Article  CAS  PubMed  Google Scholar 

  • Fischer D, Gonçalves M, Oliveira F, Alvarenga M (1999) Constituents from Siparuna apiosyce. Fitoterapia 70:322–323

    Article  CAS  Google Scholar 

  • Hagel JM, Mandal R, Han B, Han J, Dinsmore DR, Borchers CH, Wishart DS, Facchini PJ (2015) Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y, Zeng Q, Fu JJ, Kou ZJ, Chang RJ, Jin HZ, Zhang WD (2011) Chemical constituents from Tsoongiodendron odorum Chun. Biochem Syst Ecol 39:209–212

    Article  CAS  Google Scholar 

  • Ikezawa N, Iwasa K, Sato F (2008) Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J Biol Chem 283:8810–8821

    Article  CAS  PubMed  Google Scholar 

  • Iqbal E, Lim LBL, Salim KA, Faizi S, Ahmed A, Mohamed AJ (2018) Isolation and characterization of aristolactam alkaloids from the stem bark of Goniothalamus velutinus (Airy Shaw) and their biological activities. JKSUS 30:41–48

    Google Scholar 

  • Itoh A, Tanahashi T, Nagakura N (1995) Five tetrahydroisoquinoline-monoterpene glucosides and a tetrahydro-β-carboline-monoterpene glucoside from Alangium lamarckii. J Nat Prod 58:1228–1239

    Article  CAS  Google Scholar 

  • Jarraya RM, Bouaziz A, Hamdi B, Salah A, Damak M (2008) N-methylisosalsoline from Hammada scoparia. Acta Crystallogr E 64:o1714

    Article  CAS  Google Scholar 

  • Jenis J, Nugroho AE, Hashimoto A, Deguchi J, Hirasawa Y, Wong CP, Kaneda T, Shirota O, Morita H (2015) A new benzylisoquinoline alkaloid from Leontice altaica. Nat Prod Commun 10:291–292

    PubMed  Google Scholar 

  • Kaya GI, Unver N, Gozler B, Bastida J (2004) (−)-Capnoidine and (+)-bulbocapnine from an Amaryllidaceae species, Galanthus nivalis subsp. cilicicus. Biochem Syst Ecol 32:1059–1062

    Article  CAS  Google Scholar 

  • Kumar V (2017) Study of chemotaxonomy: meaning, stages and significance. Universal Research Reports 4:6–8

    Google Scholar 

  • Ladino OJP, Suárez LEC (2010) Isoquinoline alkaloids of Zanthoxylum quinduense (Rutaceae). Biochem Syst Ecol 38:853–856

    Article  CAS  Google Scholar 

  • Li H, Kao C, Tsai C, Li W, Chen C (2017) Isoquinoline Alkaloids from Michelia fuscata. Chem Nat Compd 53:504–507

    Article  CAS  Google Scholar 

  • Li YH, Li HM, Li Y, He J, Deng X, Peng LY, Gao LH, Zhao QS, Li RT, Wu XD (2014) New alkaloids sinomacutines A-E, and cephalonine-2-O-β-d-glucopyranoside from rhizomes of Sinomenium acutum. Tetrahedron 70:8893–8899

    Article  CAS  Google Scholar 

  • Lima N, Santos V, La Porta FA (2018) Quimiodiversidade, Bioatividade e Quimiossistemática do gênero Inga (FABACEAE): Uma breve Revisão. Rev Virtual Quim 10:459–473

    Article  Google Scholar 

  • Lin WH, Fu HZ, Hano Y, Nomura T (1997) Alkaloids from the roots of Aristolochia triangularis (I). J Chinese Pharm Sci 6:8–13

    CAS  Google Scholar 

  • Liscombe DK, Facchini PJ (2008) Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Curr Opin Biotech 19:173–180

    Article  CAS  PubMed  Google Scholar 

  • Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Erratum to “Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms”. Phytochemistry 66:2500–2520

    Article  CAS  Google Scholar 

  • López JA, Lin FT, Duah FK, Aly Y, Schiff PL (1988) Mollinedine, a new alkaloid from Mollinedia costaricensis. J Nat Prod 51:754–759

    Article  PubMed  Google Scholar 

  • Lucio ASSC, da Silva Almeida JRG, da-Cunha EVL, Tavares JF, Barbosa Filho JM (2015) Alkaloids of the Annonaceae: occurence and a compilation of their biological activities. In: The alkaloids: chemistry and biology, vol 74, pp 233–409

    Google Scholar 

  • Marti G, Eparvier V, Morleo B, Ven JL, Apel C, Bodo B, Amand S, Dumontet V, Lozach O, Meijer L (2013) Natural aristolactams and aporphine alkaloids as inhibitors of CDK1/Cyclin B and DYRK1A. Molecules 18:3018–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin F, Grkovic T, Sykes ML, Shelper T, Avery VM, Camp D, Quinn RJ, Davis RA (2011) Alkaloids from the Chinese vine Gnetum montanum. J Nat Prod 74:2425–2430

    Article  CAS  PubMed  Google Scholar 

  • Menezes LR, Costa CO, Rodrigues ACBC, Santo FRE, Nepel A, Dutra LM, Silva F, Soares MB, Barison A, Costa EV (2016) Cytotoxic alkaloids from the stem of Xylopia laevigata. Molecules 21:890

    Article  PubMed Central  Google Scholar 

  • Misra A, Srivastava S (2016) Chemotaxonomy: An approach for conservation & exploration of industrially potential medicinal plants. J Pharmacogn Nat Prod 2:4. https://doi.org/10.4172/2472-0992.1000e108

    Article  Google Scholar 

  • Mulholland DA, Crouch N, Decker B, Smith MT (2002) The isolation of the Amaryllidaceae alkaloid crinamine from Dioscorea dregeana (Dioscoreaceae). Biochem Syst Ecol 2:183–185

    Article  Google Scholar 

  • Nomura T, Quesada AL, Kutchan TM (2008) The new β-d-glucosidase in terpenoid-isoquinoline alkaloid biosynthesis in Psychotria ipecacuanha. J Biol Chem 283:34650–34659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang SQ, Wang GQ, Lin JS, Diao Y, Xu RA (2014) Cytotoxic activity of the alkaloids from Broussonetia papyrifera fruits. Pharm Biol 52:1315–1319

    Article  CAS  PubMed  Google Scholar 

  • Popović M, Djurković R, Gašić O, Pal B, Dutschewska H, Kuzmanov B (1992) Chemical and cytological investigation of Thalictrum minus from Vojvodina Region. Biochem Syst Ecol 20:255–258

    Article  Google Scholar 

  • Qin XD, Yang S, Zhao Y, Gao Y, Ren FC, Zhang DY, Wang F (2017) A new Aporphine alkaloid from Aconitum carmichaelii. Chem Nat Compd 53:501–503

    Article  CAS  Google Scholar 

  • Rastrelli L, Capasso A, Pizza C, De Tommasi N, Sorrentino L (1997) New protopine and benzyltetrahydroprotoberberine alkaloids from Aristolochia constricta and their activity on isolated guinea-pig ileum. J Nat Prod 60:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Riley-Saldaña CA, del Rocío Cruz-Ortega M, Vázquez MM, De-la-Cruz-Chacón I, Castro-Moreno M, González-Esquinca AR (2017) Acetogenins and alkaloids during the initial development of Annona muricata L. (Annonaceae). Z Naturforsch C 72:497–506

    Article  PubMed  CAS  Google Scholar 

  • Santos CAM, Reichert CL, Santos TG (2017) Alcaloides isoquinolínicos. In: Simões CMO (ed) Farmacognosia do produto ao medicamento. Artmed, pp 331–347

    Google Scholar 

  • Sauvain M, Moretti C, Bravo JA, Callapa J, Muñoz V, Ruiz E, Richard B, Le Men-Olivier L (1996) Antimalarial activity of alkaloids from Pogonopus tubulosus. Phytother Res 10:198–201

    Article  CAS  Google Scholar 

  • Schimming T, Jenett-Siems K, Siems K, Witte L, Gupta MP, Eich E (2000) Iseluxine: a novel isoquinolinone alkaloid from Iseia luxurians. Z Naturforsch C 55:1023–1025

    Article  CAS  Google Scholar 

  • Schnetzler BN, Teixeira SP, Marinho CR (2017) Trichomes that secrete substances of a mixed nature in the vegetative and reproductive organs of some species of Moraceae. Acta Bot Bras 31:392–402

    Article  Google Scholar 

  • Shamma M, Guinaudeau H (1984) Biogenetic pathways for the aporphinoid alkaloids. Tetrahedron 40:4795–4822

    Article  CAS  Google Scholar 

  • Silva F, Silva Filho FA, Lima BR, Almeida RA, Soares ER, Koolen HH, Souza AD, Pinheiro ML (2016) Chemotaxonomy of the Amazonian Unonopsis species based on leaf alkaloid fingerprint direct infusion ESI-MS and chemometric analysis. J Brazil Chem Soc 27:599–604

    Google Scholar 

  • Singh A, Bajpai V, Kumar S, Rawat AKS, Kumar B (2017) Analysis of isoquinoline alkaloids from Mahonia leschenaultia and Mahonia napaulensis roots using UHPLC-Orbitrap-MSn and UHPLC-QqQLIT-MS/MS. J Pharm Anal 7:77–86

    Article  PubMed  Google Scholar 

  • Singh R (2016) Chemotaxonomy: a tool for plant classification. J Med Plants 4:90–93

    Google Scholar 

  • Stanstrup J, Schmidt JS, Rasmussen HB, Mølgaard P, Guzmán A, Staerk D (2010) Bisbenzylisoquinoline alkaloids as markers of Atherospermataceae: Tetrandrine and fangchinoline from Laureliopsis philippiana. Biochem Syst Ecol 38:450–453

    Article  CAS  Google Scholar 

  • Stevigny C, Bailly C, Quetin-Leclercq J (2005) Cytotoxic and antitumor potentialities of aporphinoid alkaloids. Curr Med Chem Anticancer Agents 5(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Suau R, Cabezudo B, Rico R, López-Romero JM, Nájera F (2002) Alkaloids from Fumaria sepium and Fumaria agraria. Biochem Syst Ecol 30:263–265

    Article  CAS  Google Scholar 

  • Ünsal Ç, Eroğlu E, Şerbetçi T, Mat A, Sarıyar G (2008) Alkaloids of Papaver clavatum and P. stylatum. Biochem Syst Ecol 5:497–499

    Article  CAS  Google Scholar 

  • Urzua A, Cassels BK (1978) Alkaloid chemosystematics, chemotaxonomy and biogenesis in the Atherospermataceae. Lloydia 41:98–113

    CAS  Google Scholar 

  • Urzua A, Espinoza J, Olguin A, Santander R (2013) Phenolic aristolactams from leaves and stems of Aristolochia chilensis. Bol Latinoam Caribe de Plantas Med Aromát 12:537–542

    CAS  Google Scholar 

  • Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175

    Article  CAS  Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2:251–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wink M (2018) Quinolizidine and pyrrolizidine alkaloid chemical ecology—a mini-review on their similarities and differences. J Chem Ecol. https://doi.org/10.1007/s10886-018-1005-6

    Article  PubMed  Google Scholar 

  • Yang GM, Sun J, Pan Y, Zhang JL, Xiao M, Zhu MS (2018) Isolation and identification of a tribenzylisoquinoline alkaloid from Nelumbo nucifera Gaertn, a novel potential smooth muscle relaxant. Fitoterapia 124:58–65

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Zhang Y, Branfman AR, Baldessarini RJ, Neumeyer JL (2007) Advances in development of dopaminergic aporphinoids. J Med Chem 50:171–181

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Rao G (2009) Aporphine, protoberberine and morphine alkaloids from the tubers of Stephania yunnanensis. Biochem Syst Ecol 37:622–625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson R. dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dos Santos, A.R., Vaz, N.P. (2019). Isoquinoline Alkaloids and Chemotaxonomy. In: Ramawat, K. (eds) Biodiversity and Chemotaxonomy. Sustainable Development and Biodiversity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30746-2_8

Download citation

Publish with us

Policies and ethics