Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 249))

Abstract

In the previous chapters, we have successfully designed adaptive HOSM based observers for state observation and FDI of the PEM fuel cell systems. We now turn our attention towards the power side of the PEMFC. In fact, the PEMFC itself has severe dynamic limitations due to the time response of fuel flow and fuel delivery systems (hydrogen and air feed systems) [23]. In order for a PEMFC power system to be employed in varying load applications like electrical vehicles, storage elements with fast response time need to be integrated into the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C.L.P., Wen, G.X., Liu, Y.J., Wang, F.Y.: Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(6), 1217–1226 (2014)

    Article  Google Scholar 

  2. Dijk, E.V., Spruijt, J., O’sullivan, D.M., Klaassens, J.B.: PWM-switch modeling of DC-DC converters. IEEE Trans. Power Electron. 10(6), 659–665 (1995)

    Google Scholar 

  3. Doncker, R.W.D., Divan, D.M., Kheraluwala, M.H.: A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 27(1), 63–73 (1991)

    Article  Google Scholar 

  4. Gao, Q., Zeng, X.J., Feng, G., Wang, Y., Qiu, J.: T-S-fuzzy-model-based approximation and controller design for general nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 42(4), 1143–1154 (2012)

    Article  Google Scholar 

  5. Gao, W., Hung, J.C.: Variable structure control of nonlinear systems: a new approach. IEEE Trans. Ind. Electron. 40(1), 45–55 (1993)

    Article  Google Scholar 

  6. Juang, C.F., Huang, R.B., Cheng, W.Y.: An interval type-2 fuzzy-neural network with support-vector regression for noisy regression problems. IEEE Trans. Fuzzy Syst. 18(4), 686–699 (2010)

    Article  Google Scholar 

  7. Kazimierczuk, M.K.: Pulse-width Modulated DC-DC Power Converters. Wiley (2015)

    Google Scholar 

  8. Khanesar, M.A., Kayacan, E., Teshnehlab, M., Kaynak, O.: Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation. IEEE Trans. Ind. Electron. 59(11), 4443–4455 (2012)

    Article  Google Scholar 

  9. Lam, H., Xiao, B., Yu, Y., Yin, X., Han, H., Tsai, S.H., Chen, C.S.: Membership-function-dependent stability analysis and control synthesis of guaranteed cost fuzzy-model-based control systems. Int. J. Fuzzy Syst. 18(4), 537–549 (2016)

    Article  MathSciNet  Google Scholar 

  10. Lam, H.K., Li, H., Deters, C., Secco, E.L., Wurdemann, H.A., Althoefer, K.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 61(2), 956–968 (2014)

    Article  Google Scholar 

  11. Lee, J.Y., Jeong, Y.S., Han, B.M.: An isolated DC/DC converter using high-frequency unregulated LLC resonant converter for fuel cell applications. IEEE Trans. Ind. Electron. 58(7), 2926–2934 (2011)

    Article  Google Scholar 

  12. Lin, Y.Y., Chang, J.Y., Lin, C.T.: A TSK-type-based self-evolving compensatory interval type-2 fuzzy neural network (TSCIT2FNN) and its applications. IEEE Trans. Ind. Electron. 61(1), 447–459 (2014)

    Article  Google Scholar 

  13. Lin, Y.Y., Liao, S.H., Chang, J.Y., Lin, C.T.: Simplified interval type-2 fuzzy neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 959–969 (2014)

    Article  Google Scholar 

  14. Liu, J., Gao, Y., Luo, W., Wu, L.: Takagi-Sugeno fuzzy-model-based control of three-phase AC/DC voltage source converters using adaptive sliding mode technique. IET Control Theory Appl. 11(8), 1255–1263 (2016)

    Article  MathSciNet  Google Scholar 

  15. Liu, J., Gao, Y., Su, X., Wack, M., Wu, L.: Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique. IEEE Trans. Control Syst. Technol. 27(3), 1129–1138 (2019)

    Article  Google Scholar 

  16. Liu, J., Yin, Y., Luo, W., Vazquez, S., Franquelo, L.G.: Sliding mode control of a three-phase AC/DC voltage source converter under unknown load conditions: industry applications. IEEE Trans. Syst. Man Cybern.: Syst. 48(10), 1771–1780 (2018)

    Article  Google Scholar 

  17. Mendel, J.M.: Uncertain rule-based fuzzy systems. In: Introduction and New Directions, p. 684. Springer (2017)

    Google Scholar 

  18. Mendez-Diaz, F., Pico, B., Vidal-Idiarte, E., Calvente, J., Giral, R.: HM/PWM seamless control of a bidirectional buck-boost converter for a photovoltaic application. IEEE Trans. Power Electron. 34(3), 2887–2899 (2019)

    Article  Google Scholar 

  19. Morroni, J., Corradini, L., Zane, R., Maksimovic, D.: Adaptive tuning of switched-mode power supplies operating in discontinuous and continuous conduction modes. IEEE Trans. Power Electron. 24(11), 2603–2611 (2009)

    Article  Google Scholar 

  20. Oucheriah, S., Guo, L.: PWM-based adaptive sliding-mode control for boost DC-DC converters. IEEE Trans. Ind. Electron. 60(8), 3291–3294 (2013)

    Article  Google Scholar 

  21. Shen, L., Lu, D.D.C., Li, C.: Adaptive sliding mode control method for DC-DC converters. IET Power Electron. 8(9), 1723–1732 (2015)

    Article  Google Scholar 

  22. Sira-Ramirez, H.: Sliding-mode control on slow manifolds of DC-to-DC power converters. Int. J. Control 47(5), 1323–1340 (1988)

    Article  MathSciNet  Google Scholar 

  23. Thounthong, P., Raël, S., Davat, B.: Control strategy of fuel cell and supercapacitors association for a distributed generation system. IEEE Trans. Ind. Electron. 54(6), 3225–3233 (2007)

    Article  Google Scholar 

  24. Utkin, V., Gulder, J., Shi, J.: Sliding mode control in electro-mechanical systems. In: Automation and Control Engineering Series, vol. 34. Taylor & Francis Group (2009)

    Google Scholar 

  25. Wai, R.J., Lin, Y.F., Liu, Y.K.: Design of adaptive fuzzy-neural-network control for a single-stage boost inverter. IEEE Trans. Power Electron. 30(12), 7282–7298 (2015)

    Article  Google Scholar 

  26. Wai, R.J., Shih, L.C.: Design of voltage tracking control for DC-DC boost converter via total sliding-mode technique. IEEE Trans. Ind. Electron. 58(6), 2502–2511 (2011)

    Article  Google Scholar 

  27. Wai, R.J., Shih, L.C.: Adaptive fuzzy-neural-network design for voltage tracking control of a DC-DC boost converter. IEEE Trans. Power Electron. 27(4), 2104–2115 (2012)

    Article  Google Scholar 

  28. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  Google Scholar 

  29. Wang, J.: A new type of fuzzy membership function designed for interval type-2 fuzzy neural network. Acta Autom. Sin. 43(8), 1425–1433 (2017)

    MATH  Google Scholar 

  30. Wu, L., Gao, Y., Liu, J., Li, H.: Event-triggered sliding mode control of stochastic systems via output feedback. Automatica 48, 79–92 (2017)

    Article  MathSciNet  Google Scholar 

  31. Yang, W.H., Huang, C.J., Huang, H.H., Lin, W.T., Chen, K.H., Lin, Y.H., Lin, S.R., Tsai, T.Y.: A constant-on-time control DC-DC buck converter with the pseudowave tracking technique for regulation accuracy and load transient enhancement. IEEE Trans. Power Electron. 33(7), 6187–6198 (2018)

    Article  Google Scholar 

  32. Yin, Y., Liu, J., Sanchez, J.A., Wu, L., Vazquez, S., Leon, J.I., Franquelo, L.G.: Observer-based adaptive sliding mode control of NPC converters: an RBF neural network approach. IEEE Trans. Power Electron. 34(4), 3831–3841 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Gao, Y., Yin, Y., Wang, J., Luo, W., Sun, G. (2020). Sliding Mode Control of DC/DC Power Converters. In: Sliding Mode Control Methodology in the Applications of Industrial Power Systems. Studies in Systems, Decision and Control, vol 249. Springer, Cham. https://doi.org/10.1007/978-3-030-30655-7_8

Download citation

Publish with us

Policies and ethics