Skip to main content

Examining the Degree of Engagement of a Participant in Economic Games Using Cognitive Neuroscience Techniques

  • Conference paper
  • First Online:
Experimental and Quantitative Methods in Contemporary Economics (CMEE 2018)

Abstract

The popularity of economic games is used mainly for learning. It causes a need for methods allowing to evaluate their content in terms of player’s satisfaction already at the pre-production stage. There are already methods to determine a player’s interest in a game, but they do not always allow for objective and unambiguous determination of a player’s involvement. Cognitive neuroscience methods can give such an assessment. The aim of the research presented in this chapter is to develop a concept of a procedure for investigating a player’s involvement in a game using cognitive neuroscience methods. The chapter presents the concept of the research procedure, the survey, the prototype of the game and the review of the engagement indexes. On the basis of the analysis of the results of the survey, it was stated, among others, that the respondents do not like to take a big risk related to money. Therefore, in the designed economy game, the player should be accustomed to taking risks in order not to be discouraged from the game. In addition, through the use of cognitive neuroscience, we are able to have knowledge of the level of engagement of the player in each part of the game. Then, game developers will be able to improve them in order to get the greatest satisfaction from the player. In the case of economic games, this will translate into a longer time spent by the player on the game, and thus his skills acquired during the game will be greater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Latuszyńska, M.: Experimental research in economics and computer simulation. In: Nermend, K., Latuszyńska, M. (eds.) Selected Issues in Experimental Economics, pp. 151–169. Springer, Cham (2016)

    Chapter  Google Scholar 

  2. Martey, R.M., Kenski, K., Folkestad, J., et al.: Measuring game engagement: Multiple methods and construct complexity. Simul. Gaming 45(4–5), 528–547 (2014). https://doi.org/10.1177/1046878114553575

    Article  Google Scholar 

  3. Chiang, Y., Cheng, C., Lin, S.S.J.: The effects of digital games on undergraduate players’ flow experiences and affect. In: 2008 Second IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, pp. 157–159 (2008). https://doi.org/10.1109/digitel.2008.11

  4. Witmer, A., Slater, M.: Measuring presence: A response to the Witmer and singer presence questionnaire. Presence Virtual Augmented Reality 8(5), 560–565 (1999). https://doi.org/10.1162/105474699566477

    Article  Google Scholar 

  5. Hosťovecký, M., Babusiak, B.: Brain activity: Beta wave analysis of 2D and 3D serious games using EEG. J. Appl. Math. Stat. Inform. 13(6), 39–53 (2018). https://doi.org/10.1515/jamsi-2017-0008

    Article  Google Scholar 

  6. Plass-Oude Bos, D., Reuderink, B., van de Laar, B. et al.: Brain-computer interfacing and games. In: Brain-Computer Interfaces: Applying Our Minds to Human-Computer Interaction, pp. 149–178. (2010). https://doi.org/10.1007/978-1-84996-272-8_10

    Chapter  Google Scholar 

  7. Pope, A.T., Bogart, E.H., Bartolome, D.S.: Biocybernetic system evaluates indices of operator engagement in automated task. Biol. Psychol. 40(1–2), 187–195 (1995). https://doi.org/10.1016/0301-0511(95)05116-3

    Article  Google Scholar 

  8. Smith, M., Gevins, A.: Neurophysiologic monitoring of mental workload and fatigue during operation of a flight simulator. Proc. SPIE Biomonitoring Physiol. Cogn. Perform. During Mil. Oper. 5797, 116–126 (2005). https://doi.org/10.1117/12.602181

    Article  Google Scholar 

  9. Yamada, F.: Frontal midline theta rhythm and eye blinking activity during a VDT task and a video game: Useful tools for psychophysiology in ergonomics. Ergonomics 41(5), 678–688 (1998). https://doi.org/10.1080/001401398186847

    Article  Google Scholar 

  10. Hockey, G.R.J., Nickel, P., Roberts, A.C., Roberts, M.H.: Sensitivity of candidate markers of psychophysiological strain to cyclical changes in manual control load during simulated process control. Appl. Ergonomics 40(6), 1011–1018 (2009). https://doi.org/10.1016/j.apergo.2009.04.008

    Article  Google Scholar 

  11. Nassef, A., Mahfouf, M., Linkens, D.A., et al.: The assessment of heart rate variability (HRV) and task load index (TLI) as physiological markers for physical stress. In: Dössel, O., Schlegel, W.C. (eds.) World Congress on Medical Physics and Biomedical Engineering, September 2009, Munich, Germany, pp. 146–149. Springer, Heidelberg (2010)

    Google Scholar 

  12. McMahan, T., Parberry, I., Parsons, T.D.: Evaluating player task engagement and arousal using electroencephalography. In: 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences vol. 3, pp. 2303–2310. (2015). https://doi.org/10.1016/j.promfg.2015.07.376

    Article  Google Scholar 

  13. Kamzanova, A.T., Matthews, G., Kustubayeva, A.M., Jakupov, S.M.: EEG indices to time-on-task effects and to a workload manipulation (Cueing). World Acad. Sci. Eng. Technol. 80, 19–22 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Biercewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biercewicz, K., Borawski, M. (2020). Examining the Degree of Engagement of a Participant in Economic Games Using Cognitive Neuroscience Techniques. In: Nermend, K., Łatuszyńska, M. (eds) Experimental and Quantitative Methods in Contemporary Economics. CMEE 2018. Springer Proceedings in Business and Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-30251-1_15

Download citation

Publish with us

Policies and ethics