Skip to main content

Using the SURF Model to Simulate Fragment Impact on Energetic Materials

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

The Scaled Uniform Reactive Front (SURF) model developed by Menikoff and Shaw (Comb. Theory Model., 2012) is a High Explosive (HE) reactive burn model. It has been shown to accurately model plate impact shock experiments while requiring only a minimal number of calibration parameters. We have implemented SURF into the Eulerian code Pagosa. SURF has been shown to suitably model high-speed impact and accurately capture the entire Shock-to-Detonation Transition (SDT) process. SURF is also able to model short shocks and dead zones, critical for finite sized impactors such those used in fragment impact investigations. Many burn models cannot do this. The success of SURF is derived from it being based on the physics of hotspots, triggered by the leading shock, and thus can naturally account for properties like shock desensitization. SURF needs to be calibrated for each explosive modeled and for that we use plate impact experiments. For the three explosives considered in this work, PBX 9501, PBX 9502 and Composition B, we use the data of Gustavsen and Dattelbaum (Embedded electromagnetic gauge measurements and modeling of shock initiation in the TATB based explosives PBX 9502 and LX-17. LA-UR-01-3339). After discussing the model, its calibration, we apply SURF to model fragment impact experiments where the effects of release waves originating from finite sized impactors is critical. For example, we use SURF to investigate fragment impact on PBX9502, diagnosed using high speed photography, to support our numerical study of the effect of lateral and back surface release wave on the detonation process. SURF is also applied to successfully model ball impact on the explosive PBX 9501. These successes support the notion that SURF is a reliable tool for modeling impacted explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields, J.E., Bourne, N.K., Palmer, S.J.P., Walley, S.M., Smallwood, J.M., Gray, P.: Hot-spot ignition mechanisms for explosives and propellants. Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences. 15 May 1992. https://doi.org/10.1098/rsta.1992.0034

  2. Tarver, C.M., Chidester, S.K., Nichols III, A.L.: Critical conditions for impact- and shock-induced hot spots in solid explosives. J. Phys. Chem. 100, 5794–5799 (1996)

    Article  Google Scholar 

  3. Handley, C.A., Lambourn, B.D., Whitworth, N.J., James, H.R., Belfield, W.J.: Understanding the shock and detonationresponse of high explosives at the continuum and meso scales. Appl. Phys. Rev. 5, 011303 (2018). https://doi.org/10.1063/1.5005997

    Article  Google Scholar 

  4. Menikoff, R., Shaw, M.S.: The SURF model and the curvature effect for PBX 9502. Comb. Theory Model. (2012). https://doi.org/10.1080/13647830.2012.713994

    Article  Google Scholar 

  5. Gustavsen, R.L. et al.: Embedded electromagnetic gauge measurements and modeling of shock initiation in the TATB based explosives PBX 9502 and LX-17. LA-UR-01-3339

    Google Scholar 

  6. Chidester, S.K., et al.: Shock Initiation of Damaged Explosives, (2009). LLNL report LLNL-CONF-418560 https://e-reports-ext.llnl.gov/pdf/380356.pdf

  7. Pemberton, S.J. et al.: PBX-9501 SMIS shots with 1/2 inch and 5/8 inch round ball ammunition. LANL report: LA-UR-11-06457

    Google Scholar 

  8. Lee Perry, W., Clements, B., Ma, X., Mang, J.T.: Relating microstructure, temperature, and chemistry to explosive ignition and shock sensitivity. Combust. Flame. 190, 171–176 (2018)

    Article  Google Scholar 

  9. Clements, B., Ma, X., Perry, L., Rae, P., Armstrong, C., Haroz, E., Dickson, P.: Shock Initiation Response of PBX 9502 Considering Rarefaction Wave Effects, Proceedings of the 16th Internation Detonation Symposium (in press)

    Google Scholar 

Download references

Acknowledgements

This work was funded by ASC-PEM-HE and ASC Safety Program. We gratefully thank Tariq Aslam, Mike Burkett, and Brandon Smith for their support of the project. We also thank the experimental fragment impact team of Lee Perry and plate impact team of Rick Gustavsen and Dana Dattelbaum. Finally, we thank Ralph Menikoff and Sam Shaw for discussions on the SURF model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, X., Clements, B. (2020). Using the SURF Model to Simulate Fragment Impact on Energetic Materials. In: Lamberson, L. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30021-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30021-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30020-3

  • Online ISBN: 978-3-030-30021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics