Skip to main content

Design Processes and Decisions

  • Chapter
  • First Online:
Serious Games for Enhancing Law Enforcement Agencies

Part of the book series: Security Informatics and Law Enforcement ((SILE))

  • 631 Accesses

Abstract

This chapter discusses the design of serious games and presents the CENTRIC Serious Games Developmental Framework to guide design processes and decisions. Considering aspects such as pedagogy, immersion, fidelity and presence, this framework discusses a holistic design method, which utilises the potential of co-development to create a successful serious game.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Feature creep is the potential for the requirements of a project to increase beyond the original scope of the product throughout the course of development.

References

  • Adams, E., & Dormans, J. (2012). Game mechanics: Advanced game design. Berkeley, CA: New Riders.

    Google Scholar 

  • Alexander, A. L., Brunyé, T., Sidman, J., & Weil, S. A. (2005). From gaming to training: A review of studies on fidelity, immersion, presence, and buy-in and their effects on transfer in pc-based simulations and games. DARWARS Training Impact Group, 5, 1–14.

    Google Scholar 

  • Arthur, K. W., & Brooks Jr, F. P. (2000). Effects of field of view on performance with head-mounted displays. University of North Carolina at Chapel Hill.

    Google Scholar 

  • Begault, D. R. (1993). Head-up auditory displays for traffic collision avoidance system advisories: A preliminary investigation. Human Factors, 35(4), 707–717.

    Article  Google Scholar 

  • Begault, D. R., Ellis, S. R., & Wenzel, E. M. (1998, October). Headphone and Head-Mounted Visual Displays for Virtual Environments. In Audio Engineering Society Conference: 15th International Conference: Audio, Acoustics & Small Spaces. Audio Engineering Society.

    Google Scholar 

  • Bolia, R. S., D’Angelo, W. R., & McKinley, R. L. (1999). Aurally aided visual search in three-dimensional space. Human Factors, 41(4), 664–669.

    Article  Google Scholar 

  • Bonneel, N., Suied, C., Viaud-Delmon, I., & Drettakis, G. (2010). Bimodal perception of audio-visual material properties for virtual environments. ACM Transactions on Applied Perception, 7(1), 1.

    Article  Google Scholar 

  • Bowman, D. A., McMahan, R. P., & Ragan, E. D. (2012). Questioning naturalism in 3D user interfaces. Communications of the ACM, 55(9), 78–88.

    Article  Google Scholar 

  • Cui, J., & Sourin, A. (2014). Feasibility study on free hand geometric modelling using leap motion in VRML/X3D. International Conference on Cyberworlds (pp. 389–392). IEEE.

    Google Scholar 

  • Dinh, H. Q., Walker, N., Hodges, L. F., Song, C., & Kobayashi, A. (1999). Evaluating the importance of multi-sensory input on memory and the sense of presence in virtual environments. Proceedings IEEE Virtual Reality (Cat. No. 99CB36316) (pp. 222–228). IEEE.

    Google Scholar 

  • Feygin, D., Keehner, M., & Tendick, R. (2002). Haptic guidance: Experimental evaluation of a haptic training method for a perceptual motor skill. Haptic Interfaces for Virtual Environment and Teleoperator Systems (pp. 40–47). IEEE.

    Google Scholar 

  • Gruchalla, K. (2004). Immersive well-path editing: Investigating the added value of immersion. EEE Virtual Reality, 2004, 157–164.

    Google Scholar 

  • Hulusic, V., Harvey, C., Debattista, K., Tsingos, N., Walker, S., Howard, D., et al. (2012). Acoustic rendering and auditory–visual cross-modal perception and interaction. Computer Graphics Forum, 31, 102–131.

    Article  Google Scholar 

  • Jones, D. L., Stanney, K. M., & Foaud, H. (2005). An optimized spatial audio system for virtual training simulations: Design and evaluation. Georgia Institute of Technology.

    Google Scholar 

  • Ju, Z., & Liu, H. (2011). A unified fuzzy framework for human-hand motion recognition. IEEE Transactions on Fuzzy Systems, 19(5), 901–913.

    Article  Google Scholar 

  • King, G. (2005). Play, modality and claims of realism in full Spectrum warrior. Aesthetics of Play Conference Proceedings.

    Google Scholar 

  • Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. New Jersey, USA: FT Press.

    Google Scholar 

  • Livingston, M. A., Sebastian, J., Ai, Z., & Decker, J. W. (2012). Performance measurements for the Microsoft Kinect skeleton. IEEE Virtual Reality Workshops (VRW) (pp. 119–120). IEEE.

    Google Scholar 

  • Mania, K., Wooldridge, D., Coxon, M., & Robinson, A. (2006). Mania, Katerina, Dave Wooldridge, Matthew Coxon, and Andrew Robinson. The effect of visual and interaction fidelity on spatial cognition in immersive virtual environments. IEEE Transactions on Visualization and Computer Graphics, 12(3), 396–404.

    Article  Google Scholar 

  • McKinley, R. L., & Ericson, M. A. (1997). Flight demonstration of a 3-D auditory display. InBinaural and Spatial Hearing in Real and Virtual Environments. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • McMahan, R. P., Bowman, D. A., Zielinski, D. J., & Brady, R. B. (2012). Evaluating display fidelity and interaction fidelity in a virtual reality game. IEEE Transactions on Visualization and Computer Graphics, 18(4), 626–633.

    Article  Google Scholar 

  • Morris, D., Tan, H., Barbagli, F., Chang, T., & Salisbury, K. (2007). Haptic feedback enhances force skill learning. Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07) (pp. 21–26). IEEE.

    Google Scholar 

  • Patel, K., Bailenson, J. N., Hack-Jung, S., Diankov, R., & Bajcsy, R. (2006). The effects of fully immersive virtual reality on the learning of physical tasks. 9th Annual International Workshop on Presence, (pp. 87–94). Ohio, USA.

    Google Scholar 

  • Pausch, R., Proffitt, D., & Williams, G. (1997, August). Quantifying immersion in virtual reality. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques (pp. 13–18). ACM Press/Addison-Wesley Publishing Co..

    Google Scholar 

  • Perrott, D. R., Saberi, K., Brown, K., & Strybel, T. Z. (1990). Auditory psychomotor coordination and visual search performance. Perception & Psychophysics, 48(3), 214–226.

    Article  Google Scholar 

  • Ragan, E. D., Bowman, D. A., Kopper, R., Stinson, C., Scerbo, S., & McMahan, R. P. (2015). Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. IEEE Transactions on Visualization and Computer Graphics, 21(7), 794–807.

    Article  Google Scholar 

  • Riecke, B. E., Väljamäe, A., & Schulte-Pelkum, J. (2009). Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 6(2), 7.

    Google Scholar 

  • Rojas, D., Kapralos, B., Cristancho, S., Collins, K., Hogue, A., Conati, C., et al. (2012). Developing effective serious games: The effect of background sound on visual fidelity perception with varying texture resolution. Studies in Health Technology and Informatics, 173, 386–392.

    Google Scholar 

  • Rooney, P. (2012). A theoretical framework for serious game design: Exploring pedagogy, play and fidelity and their implications for the design process. International Journal of Game-Based Learning (IJGBL), 2(4), 41–60.

    Article  Google Scholar 

  • Shepherd, I. D. (2010). Get Real! -- The many faces of realism in virtual training. Post-Workshop Proceedings for - Crisis Management Training: design and use of online worlds, (pp. 62–74). Reykjavik.

    Google Scholar 

  • Sigrist, R., Rauter, G., Riener, R., & Wolf, P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review, 20(1), 21–53.

    Article  Google Scholar 

  • Slater, M., Linakis, V., Usoh, M., & Kooper, R. (1996). Immersion, presence and performance in virtual environments: An experiment with tri-dimensional chess. Proceedings of the ACM Symposium on Virtual Reality Software and Technology (pp. 163–172). ACM.

    Google Scholar 

  • Slater, M., Pankaj, K., Jesper, M., & Insu, Y. (2009). Visual realism enhances realistic response in an immersive virtual environment. IEEE Computer Graphics and Applications, 29(3), 76–84.

    Article  Google Scholar 

  • Spinuzzi, C. (2005). The methodology of participatory design. Technical Communication, 52(2), 163–174.

    Google Scholar 

  • Tholey, G., Desai, J. P., & Castellanos, A. E. (2005). Force feedback plays a significant role in minimally invasive surgery: Results and analysis. Annals of Surgery, 241(1), 102.

    Google Scholar 

  • Toups, Z. O., Kerne, A., Hamilton, W. A., & Shahzad, N. (2011). Zero-fidelity simulation of fire emergency response: Improving team coordination learning. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1959–1968.

    Google Scholar 

  • Van der Meijden, O. A., & Schijven, M. P. (2009). The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: A current review. Surgical Endoscopy, 23(6), 1180–1190.

    Article  Google Scholar 

  • Waller, D., Hunt, E., & Knapp, D. (1998). The transfer of spatial knowledge in virtual environment training. Presence, 7(2), 129–143.

    Article  Google Scholar 

  • Ware, C., & Mitchell, P. (2005). Reevaluating stereo and motion cues for visualizing graphs in three dimensions. Proceedings of the 2nd symposium on Applied perception in graphics and visualization (pp. 51–58). ACM.

    Google Scholar 

  • Weil, S. A., Hussain, T. S., Brunyé, T. T., Diedrich, F. J., Entin, E. E., Ferguson, W., et al. (2005). Assessing the potential of massive multi-player games to be tools for military training. Proceedings of the interservice/industry training, simulation, and education conference. I/ITSEC.

    Google Scholar 

  • Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence, 7(3), 225–240.

    Article  Google Scholar 

  • Yeh, Y.-Y., & Silverstein, L. D. (1992). Spatial judgments with monoscopic and stereoscopic presentation of perspective displays. Human Factors, 34(5), 583–600.

    Article  Google Scholar 

  • Ware, C., & Jessome, D. R. (1988). Using the bat: A six-dimensional mouse for object placement. IEEE Computer Graphics and Applications, 8(6), 65–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Saunders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saunders, J. (2019). Design Processes and Decisions. In: Akhgar, B. (eds) Serious Games for Enhancing Law Enforcement Agencies. Security Informatics and Law Enforcement. Springer, Cham. https://doi.org/10.1007/978-3-030-29926-2_8

Download citation

Publish with us

Policies and ethics