Skip to main content

Nanotechnology-Empowered Smart Soldier

  • Chapter
  • First Online:
Nanotechnology for Defence Applications
  • 1036 Accesses

Abstract

A soldier, known in ancient times as a warrior, is the most important element of any military organization to fight and win a war. Earlier, soldiers used to engage in hand-to-hand fight, using weapons made from locally available materials such as stone, wood, and metals, for example, bronze, iron, etc. With the advent of gun powder, the firearms in the form of canons and hand-held guns came into existence and were used as the fighting weapons, leading to colonial rule in the world after seventeenth century. The weapon technologies based on propellants and explosives made tremendous progress, resulting in types of weapons such as artillery guns, tanks, and machine guns used during the two World Wars of the twentieth century, with a war theater extending from land to sea and air. Irrespective of the explosion in warfare technology, the importance of a soldier remained intact. The only change came in the form of his weapon, protection, and communication systems as part of his payloads. The emergence of nonstate actors, that is, terrorists, has further added to the woes of the modern soldier. He has to spend long time on field duties even during peace times with additional amount of loads in terms of rations, protective clothing, along with regular weapons, armor, communication, and surveillance equipment together with power packs to keep these units operational. The weight load carried by a soldier exceeds 60 kg, which is a matter of great concern. Efforts are ongoing to reduce carrier weight of a soldier by the way of designing lightweight weapons, ammunition, body armor, surveillance, and communication systems together with replacing batteries with energy-harvesting systems from renewable sources, such as solar energy, kinetic, and thermal energy produced by the human body. Nanomaterials and nanotechnologies appear to be highly promising in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://networks.h-net.org/node/12840/discussions/2075887/warrior-and-soldier-what%E2%80%99s-difference

  2. https://en.wikipedia.org/wiki/Soldier

  3. https://en.wikiquote.org/wiki/George-S-Patton

  4. https://mwi.usma.edu/?s=%2Fthe+overweight-infantryman

  5. https://www.frontline.in/arts-and-culture/heritage/prehistoric period/article (30 Sept 2016)

  6. E. Groeneveld, Stone age tools. Ancient History Encyclopedia. Retrieved from https://www.ancient.eu/article/998/ (Dec 2016)

  7. J.A.J. Gowlett, The discovery of fire by humans: a long and convoluted process. Philos. Trans. R. Soc. B Biol. Sci. 371(1696), 20150164 (2016)

    Article  Google Scholar 

  8. http://www.notap.gov.ng/content/history-invention-wheel

  9. http://www.top10listland.com/top-10-stone-age-inventions/

  10. http://www.weapons-universe.com/Swords/Bronze_Age_Weapons.shtml

  11. I. Georganas, Weapons and warfare in early iron age thessaly. Mediter. Archaeol. Archaeom. 5(2), 63–74 (2005)

    Google Scholar 

  12. https://www.reddit.com/login?dest=https%3A%2F%2Fwww.reddit.com%2Fsubmit%3Furl%3Dhttps%253A%252F%252Fclassroom.synonym.com%252Fweapons-used-iron-age-18314.html

  13. https://en.wikipedia.org/wiki/Iron_Age

  14. T.G. Chondros, K.F. Miiidoris, C. Rossi, N. Zrnic, The evolution of the double horse chariot from the Bronze Age. FME Trans. 44, 229–236 (2016)

    Google Scholar 

  15. K. DeVries, R.D. Smith, Medieval Weapons (ABC-CLIO, Inc., Santa Barbara, 2007)

    Google Scholar 

  16. https://www.futurelearn.com/courses/agincourt/0/steps/8842

  17. medieval.stormthecastle.com/essays/the-history-of-medieval-armor.htm

  18. https://en.wikipedia.org/wiki/History_of_the_firearm

  19. C. Gravett, R. Hook, Medieval Siege Warfare (Osprey Publishing, Oxford, 1990)

    Google Scholar 

  20. https://en.wikipedia.org/wiki/Mongol_military_tactics_and_organization

  21. https://www.britannica.com/technology/…technology/From-the-Middle-Ages-to-1750

  22. https://en.wikipedia.org/wiki/Flintlock

  23. https://en.wikipedia.org/wiki/Bayonet

  24. https://www.globalsecurity.org/military/systems/ship/new-navy1.htm

  25. https://www.britannica.com/technology/small-arm

  26. M. I. Levy (ed.), War on Land: Britannica Guide to War (Britannica Education Publishing, New York, 2012)

    Google Scholar 

  27. www.newworldencyclopedia.org/entry/Machine_gun

  28. https://pjthorndyke.wordpress.com/…/inventions-and-discoveries-of-the-19th-century-…

  29. http://www.historynet.com/weapons-of-world-war-I.htm

  30. https://www.toptenz.net/top-10-wwii-infantry-weapons.php

  31. https://worldwar1letters.wordpress.com/sams-references-explained/the-doughboys-uniform-and-equipment//

  32. http://www.sofmilitary.co.uk/re-enactor-info/british/british-ww1-soldier-uniforms-and-equipment/ww1-1916-somme-soldier.aspx

  33. https://www.armyheritage.org/images/stories/Ready_for_Battle_-_World_War_II.pdf

  34. https://www.diffen.com/difference/World_War_I_vs_World_War_II

  35. P. Cavallaro, Soft body armor: an overview of materials, manufacturing, testing, and ballistic impact dynamics, NUWC-NPT Technical Report 12,057 (2011). http://dtic.mil/dtic/

  36. https://www.explainthatstuff.com/kevlar.html

  37. L-C. Alil, C. Barbu, S. Badea, F. Ilie, Aspects regarding the use of polyethylene fibers for personal armor, http://www.mta.ro/gsebs 2015v2/ConferenceProceedings/papers/ALIL_Luminita_Aspects_regarding_the_use_of_polyethylene.pdf

  38. R. Orr, The history of the soldier’s load. Australian Army Journal vii, 67–88 (2010)

    Google Scholar 

  39. https://www.forgottenweapons.com/world-war-one-soldiers-loadouts/

  40. https://www.ptxnomad.com/what-do-soldiers-carry-and-what-does-it-weigh/

  41. R. Orr, R. Pope Tactical load carriage: impacts and conditioning. (2017), Retrieved from http://epublications.bond.edu.au/tru_conf/24

  42. https://www.thefirearmblog.com/blog/2017/08/19/world-war-ii-vs-today-comparing-soldiers-load-two-eras/

  43. https://www.militaryfactory.com/smallarms/index.asp

  44. http://www.military-today.com/firearms/top_10_assault_rifles.htm

  45. https://en.wikipedia.org/wiki/List_of_assault_rifles

  46. http://www.shootingrangeindustries.com/types-of-rifle-shotgun-pistol-firearm-sights-iron-or-open-peep-telescopic-reflex-laser-more/

  47. https://en.wikipedia.org/wiki/Red_dot_sight

  48. https://en.wikipedia.org/wiki/Diopter_sight

  49. www.thefirearms.guide/ammo/what-is-caliber

  50. Gao, Personal Protective Equipment; Report to US congressional committees (Gao-17-431, May 2017)

    Google Scholar 

  51. https://www.militaryaerospace.com/articles/print/volume-17/issue-2/features/special-report/special-forces-demand-smaller-lighter-electronics.html

  52. T. Ulversoy, Software defined radios: challenges and opportunities. IEEE Commun. Surv. Tutor. 12(4), 531–550 (2010)

    Article  Google Scholar 

  53. https://www.militaryaerospace.com/articles/print/volume-13/issue-7/features/special-report/wearable-computers-help-make-individual-soldiers-part-of-the-digital-battlefield.html

  54. https://en.wikipedia.org/wiki/Night_vision_device

  55. http://www.optics4birding.com/thermal-imaging-digital-night-vision.aspx

  56. https://en.wikipedia.org/wiki/All-purpose_Lightweight_Individual_Carrying_Equipment

  57. https://www.military.com/equipment/modular-lightweight-load-carrying-equipment-molle

  58. K.A. Andersen, P.N. Grimshaw, R.M. Kelso, D.J. Bentley, Musculoskeletal lower limb injury risk in army populations. Sports Med. 2(22) (2016)

    Google Scholar 

  59. https://www.popsci.com/article/technology/how-four-technologies-will-carry-weight-war

  60. https://www.understandingnano.com/defense_nanotechnology.html

  61. https://www.azonano.com/article.aspx?ArticleID=3028

  62. N. Kumar, S. Kumbhat, Concise Concepts of Nanoscience and Nanomaterials (Scientific Publishers, Jodhpur, 2018)

    Google Scholar 

  63. Armed Forces Academy of General Milan Rastislav Stefanik (2016), ISBN 978-80-8040-529-8

    Google Scholar 

  64. Y.-M. Choi, M.G. Lee, Y. Jeon, Wearable biomechanical energy harvesting technologies. Energies 10(10), 1483–1517 (2017)

    Article  Google Scholar 

  65. http://www.rfwireless-world.com/Articles/Types-and-basics-of-Energy-Harvesting-Techniques.html

  66. J. Sisto, Wearable technology soldiers of the future will generate their own power, Army Technol. Mag., 2, pp. 23–24, (Nov/Dec 2014)

    Google Scholar 

  67. C. Opoku, A.S. Dahiya, C. Oshman, F. Cayrel, G. Poulin-Vittrant, D. Alquier, N. Camara, Fabrication of ZnO nanowire based piezoelectric generators and related structures. Phys. Procedia 70, 858–862 (2015)

    Article  CAS  Google Scholar 

  68. J. Zhao, Z. You, A shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 14, 12497–12510 (2014)

    Article  CAS  Google Scholar 

  69. R.D. Kornbluh, R. Pelrine, H. Prahlad, A. Wong-Foy, B. McCoy, S. Kim, J. Eckerle, T. Low, From boots to buoys: promises and challenges of dielectric elastomer energy harvesting. SPIE Proc 7976, 48–66, Bellingham, WA (2011). https://doi.org/10.1117/12.882367

    Article  Google Scholar 

  70. L.A. Kosyachenko (ed.), Solar Cells, vol. 1–4, (Intech Open, 2011), ISBN: 978-953-307-570-9

    Google Scholar 

  71. S. Kumar, M. Nehra, A. Deep, D. Kedia, N. Dilbaghi, K.-H. Kim, Quantum-sized nanomaterials for solar cell applications. Renew. Sust. Energ. Rev. 73, 821–829 (2017)

    Article  CAS  Google Scholar 

  72. http://www.nanoflexpower.com/organic

  73. G. Dennler, C. Lungenschmied, H. Neugebauer, N.S. Sariciftci, M. Latreche, G. Czeremuszkin, M.R. Wertheimer, A new encapsulation solution for flexible organic solar cells. Thin Films 511, 349–353 (2006)

    Article  Google Scholar 

  74. H. Jinno, K. Fukuda, X. Xu, S. Park, Y. Suzuki, M. Koizumi, T. Yokota, I. Osaka, K. Takimiya, T. Someya, Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2, 780–785 (2017)., https://www.wearabletechnologyinsights.com/articles/11710/a-solar-cell-you-can-put-in-the-wash

    Article  CAS  Google Scholar 

  75. R. Liu, J. Wang, T. Sun, et al., Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%. Nano Lett. 17, 4240–−4247 (2017)

    Article  CAS  Google Scholar 

  76. G.S. Nolas, J. Sharp, J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, 2001)

    Book  Google Scholar 

  77. T.M. Tritt, M.A. Subramanian, Materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188 (2006)

    Article  Google Scholar 

  78. J.F. Li, W.S. Liu, I.D. Zhou, M. Zhou, High performance nanostructured thermoelectric materials. NPG Asia Mater. 2, 152–158 (2010)

    Article  Google Scholar 

  79. https://newatlas.com/wearable-thermoelectric-generator/31617/

  80. https://en.wikipedia.org/wiki/Lithium-ion_battery

  81. G. Venugopal, A. Hunt, F. Alamgir, Nanomaterials for energy storage in lithium-ion battery applications. Mater. Matters 5(2), 42 (2010)

    CAS  Google Scholar 

  82. J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson, J.M. Tour, Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7(7), 6001–6006 (2013)

    Article  CAS  Google Scholar 

  83. V.M. Castaño, R. Rodríguez, Nanotechnology for ballistic materials: from concepts to products. Mater. Technol. 47, 267–271 (2013)

    Google Scholar 

  84. https://phys.org/news/2006-08-body-armour-benefit-nanotechnology.html

  85. K. Mylvaganam, L.C. Zhang, Energy absorption capacity of carbon nanotubes under ballistic impact, Appl. Phys. Lett. 89, 123–127 (2006)

    Google Scholar 

  86. J.H. Lee, P.E. Loya, J. Lou, E.L. Thomas, Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration. Science 346, 1092–1096 (2014). and https://phys.org/news/2014-11-graphene-bullet.html

    Article  CAS  Google Scholar 

  87. E. Lepore, F. Bosia, F. Bonaccorso, M. Bruna, S. Taioli, G. Garberoglio, A.C. Ferrari, N.M. Pugn, Spider silk reinforced by graphene or carbon nanotubes. 2D Mater. 4, 031013 (2017)

    Article  Google Scholar 

  88. Y. Mahajan, In pursuit of body armour. Nanotech Insights 1, 1–9 (2010)

    Google Scholar 

  89. K. Mylvaganam, L.C. Zhang, Ballistic resistance capacity of carbon nanotubes. Nanotechnology 18, 475701–475704 (2007)

    Article  Google Scholar 

  90. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-PWAA-0019-0001

  91. https://www.military.com/kitup/2017/03/soldier-protection-system.html

  92. http://www.wearabledevices.com/what-is-a-wearable-device/

  93. https://yourstory.com/2016/12/3073273d91-what-are-the-latest-trends-in-wearable-technology/

  94. http://isssp.in/wearable-military-technologies/

  95. J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): a vision, architectural elements, and future directions, https://arxiv.org/ftp/arxiv/papers/1207/1207.0203.pdf

  96. I. Lee, K. Lee, The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58, 431–440 (2015)

    Article  Google Scholar 

  97. K.E. Friedl, M.J. Buller, W.J. Tharion, A.W. Potter, G.L. Manglapus, R.W. Hoyt, Real time physiological status monitoring (Rt-Psm): accomplishments, requirements, and research roadmap, USAriem Technical Note TN 16-02, (2016)

    Google Scholar 

  98. E. Fairbrass, L. Genders, G. Perez-Ortega, C. Swisher, V. Mittal, Value modeling and trade-off analysis of the tactical assault light operator suit. Ind. Syst. Eng. Rev. 5, 116–122 (2017)

    Google Scholar 

  99. https://www.army-technology.com/features/featuresensor-sensibility-future-of-soldier-worn-systems/

  100. C. Hurley et al. Future vest technology empowering the future soldier. Soldier Mod. 18, 33 (2017)

    Google Scholar 

  101. M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14, 11957–11992 (2014)

    Article  CAS  Google Scholar 

  102. https://www.bizvibe.com/blog/military-smart-textiles-enhance-combat-and-save-lives/

  103. E.J. Leavline, D.A. Antony, G. Singh, S. Prasannanayagi, R. Kiruthika, A compendium of nano materials and their applications in smart nano textiles. Res. J. Nanosci. Nanotechnol. 5, 44–59 (2015)

    Article  Google Scholar 

  104. A.K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza, M. Skorobogatiy, A. Khademhosseini, S.H. Yun, Nanotechnology in textiles. ACS Nano 10(3), 3042–3068 (2016)

    Article  CAS  Google Scholar 

  105. S. Coyle, Y. Wu, K.-T. Lau, D. De Rossi, G. Wallace, D. Diamond, Smart nanotextiles: a review of materials and applications. MRS Bull. 32, 434–442 (2007)

    Article  CAS  Google Scholar 

  106. https://www.ic.gc.ca/eic/site/textiles-textiles.nsf/vwapj/2012NanoTextiles_eng.pdf/$file/2012NanoTextiles_eng.pdf

  107. V. Koncar (ed.), Smart Textiles and Their Applications (Elsevier, San Diego, 2016)

    Google Scholar 

  108. https://www.wearabletechnologyinsights.com/articles/13084/soft-e-textiles-could-offer-advanced-protection-for-soldiers; https://www.wearabletechnologyinsights.com/articles/13117/fully-integrated-circuits-printed-directly-onto-fabric

  109. https://phys.org/news/2017-11-soft-e-textiles-advanced-soldiers-emergency.html

  110. T. Gao, Z. Yang, C. Chen, Y. Li, K. Fu, J. Dai, E.M. Hitz, H. Xie, B. Liu, J. Song, B. Yang, L. Hu, Three-dimensional printed thermal regulation textiles. ACS Nano 11(11), 11513–11520 (2017)

    Article  CAS  Google Scholar 

  111. Po-Chun Hsu, C. Liu, A.Y. Song, Z. Zhang, Y. Peng, J. Xie, K. Liu, W. Chun-Lan, A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3(11), e1700895 (2017)

    Article  Google Scholar 

  112. C. Li, M.M. Islam, J. Moore, J. Sleppy, C. Morrison, K. Konstantinov, S. Dou, C. Renduchintala, J. Thomas, Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat. Commun. 7, 13319 (2016)

    Article  CAS  Google Scholar 

  113. https://exoskeletonreport.com/2016/07/military-exoskeletons/

  114. http://www.isodarco.it/courses/andalo17/paper/Iso17-Altmann.pdf

  115. D. Kiserow, J. Joannopoulos, Developing revolutionary survivability technologies for soldiers, The Institute for Soldier Nanotechnologies, https://asc.army.mil/docs/pubs/alt/2007/4_OctNovDec/articles/28_The_Institute_for_Soldiers_Nanotechnologies_%2D%2D-_Developing_Revolutionary_Survivability_Technologies_for_Soldiers_200710.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Dixit, A. (2019). Nanotechnology-Empowered Smart Soldier. In: Nanotechnology for Defence Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-29880-7_7

Download citation

Publish with us

Policies and ethics