Skip to main content

Biosynthesized Metallic Nanoparticles as Emerging Cancer Theranostics Agents

  • Chapter
  • First Online:

Abstract

Cancer is considered as a great health challenge liable for outstripped demises worldwide. Currently it is treated mainly by chemotherapy and radiotherapy. However, there is a perpetual demand for the development of novel therapeutic drugs to combat this devastating disease. In this regard nanomedicine can provide an alternative platform for its diagnosis and treatment but its conventional synthesis through physiochemical methods has several shortcomings like high cost, energy intensive, and toxicity concerns. Consequently, the green synthesis of biogenic metallic nanoparticles (MNPs) from plants provides an alternate paradigm which has been proved safer, eco-friendly, energy proficient, inexpensive, and less toxic in nature. Additionally, the green MNPs have multipurpose biomedical applications like drug delivery agents, anticancerous mediators, photothermal therapy, and bio-imaging. This chapter will provide ample information on the current status of green MNPs, its anticancerous mechanisms, and efficiency in cancer diagnosis. Other issues like polydispersity and toxicity are also highlighted. Keeping in view all of the challenges, the authors anticipate biogenic MNPs may contribute to shift the paradigm toward development of novel nanomedicine that can prove as biocompatible theranostic agents in near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamson IY. Pulmonary toxicity of bleomycin. Environ Health Perspect. 1976;16:119–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed KBA, Subramaniam S, Veerappan G, Hari N, Sivasubramanian A, Veerappan A. β-Sitosterol-d-glucopyranoside isolated from Desmostachya bipinnata mediates photoinduced rapid green synthesis of silver nanoparticles. RSC Adv. 2014;4(103):59130–6.

    Article  CAS  Google Scholar 

  • Amaral JD, Xavier JM, Steer CJ, Rodrigues CM. The role of p53 in apoptosis. Discov Med. 2010;9(45):145–52.

    PubMed  Google Scholar 

  • Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen MD, Kamper P, d’Amore A, Clausen M, Bentzen H, d’Amore F. The incidence of bleomycin induced lung toxicity is increased in Hodgkin lymphoma patients over 45 years exposed to granulocyte-colony stimulating growth factor. Leuk Lymphoma. 2019;60(4):927–33.

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19(25):255102.

    Article  CAS  PubMed  Google Scholar 

  • Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology. 2011;5(1):43–54.

    Article  CAS  PubMed  Google Scholar 

  • Avilés A, Arévila N, Díaz Maqueo JC, Gómez T, García R, Nambo MJ. Late cardiac toxicity of doxorubicin, epirubicin, and mitoxantrone therapy for Hodgkin’s disease in adults. Leuk Lymphoma. 1993;11(3-4):275–9.

    Article  PubMed  Google Scholar 

  • Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S. Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts. 2013;3(3):111–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beach JA, Nary LJ, Hirakawa Y, Holland E, Hovanessian R, Medh RD. E4BP4 facilitates glucocorticoid-evoked apoptosis of human leukemic CEM cells via upregulation of Bim. J Mol Signal. 2011;6(1):13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benko I, Nagy G, Tanczos B, Ungvari E, Sztrik A, Eszenyi P, Prokisch J, Banfalvi G. Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ Toxicol Chem. 2012;31(12):2812–20.

    Article  CAS  PubMed  Google Scholar 

  • Bhaumik J, Thakur NS, Aili PK, Ghanghoriya A, Mittal AK, Banerjee UC. Bioinspired nanotheranostic agents: synthesis, surface functionalization, and antioxidant potential. ACS Biomater Sci Eng. 2015;1(6):382–92.

    Article  CAS  PubMed  Google Scholar 

  • Boilève A, Wicker C, Verret B, Leroy F, Malka D, Jozwiak M, Pontoizeau C, Ottolenghi C, De Lonlay P, Ducreux M, Hollebecque A. 5-Fluorouracil rechallenge after 5-fluorouracil-induced hyperammonemic encephalopathy. Anti-Cancer Drugs. 2019;30(3):313–7.

    Article  PubMed  CAS  Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025–102.

    Article  CAS  PubMed  Google Scholar 

  • Chang YJ, Tai CJ, Kuo LJ, Wei PL, Liang HH, Liu TZ, Wang W, Tai CJ, Ho YS, Wu CH, Huang MT. Glucose-regulated protein 78 (GRP78) mediated the efficacy to curcumin treatment on hepatocellular carcinoma. Ann Surg Oncol. 2011;18(8):2395–403.

    Article  PubMed  Google Scholar 

  • Dahoumane SA, Mechouet M, Wijesekera K, Filipe CDM, Sicard C, Bazylinski DA, Jeffryes C. Algae-mediated biosynthesis of inorganic nanomaterials as a promising route in nanobiotechnology—a review. Green Chem. 2017;19(3):552–87.

    Article  CAS  Google Scholar 

  • Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res. 2016;55(36):9557–77.

    Article  CAS  Google Scholar 

  • de Lima R, Seabra AB, Durán N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol. 2012;32(11):867–79.

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015;44(16):5778–92.

    Article  CAS  PubMed  Google Scholar 

  • Farzanegi P, Asadi M, Abdi A, Etemadian M, Amani M, Amrollah V, Shahri F, Gholami V, Abdi Z, Moradi L, Ghorbani S. Swimming exercise in combination with garlic extract administration as a therapy against doxorubicin-induced hepatic, heart and renal toxicity to rats. Toxin Rev. 2019:1–10. https://doi.org/10.1080/15569543.2018.1559194.

  • Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.

    Article  CAS  PubMed  Google Scholar 

  • Fraiser LH, Kanekal S, Kehrer JP. Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs. 1991;42(5):781–95.

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13(9):1423–33.

    Article  CAS  PubMed  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed. 2010;49(19):3280–94.

    Article  CAS  Google Scholar 

  • Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11(1):11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int. 2013;2013:535796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hameed S, Khalil AT, Ali M, Numan M, Khamlich S, Shinwari ZK, Maaza M. Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine. 2019;14(6):655–73.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  • Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729–42.

    Article  CAS  PubMed  Google Scholar 

  • Hollstein M, Alexandrov LB, Wild CP, Ardin M, Zavadil J. Base changes in tumour DNA have the power to reveal the causes and evolution of cancer. Oncogene. 2017;36(2):158–67.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Ali B, Khalil AT, Kanwal S, Shah SA, Alam MM, Badshah H, Munir A. Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl Microbiol Biotechnol. 2018;102(22):9449–70.

    Article  CAS  PubMed  Google Scholar 

  • Iravani S, Zolfaghari B. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res Int. 2013;2013:1–5.

    Article  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Möller L. Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett. 2009;188(2):112–8.

    Article  CAS  PubMed  Google Scholar 

  • Khalil AT, Ovais M, Ullah I, Ali M, Jan SA, Shinwari ZK, Maaza M. Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties. Arabian J Chem. 2017. https://doi.org/10.1016/j.arabjc.2017.08.009

  • Khalil AT, Ayaz M, Ovais M, Wadood A, Ali M, Shinwari ZK, Maaza M. In vitro cholinesterase enzymes inhibitory potential and in silico molecular docking studies of biogenic metal oxides nanoparticles. Inorg Nano-Metal Chem. 2018a;48(9):441–8.

    Article  CAS  Google Scholar 

  • Khalil AT, Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol. 2018b;46(4):838–52.

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian J Chem. 2017. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  • Kim JK, Seo SJ, Kim KH, Kim TJ, Chung MH, Kim KR, Yang TK. Therapeutic application of metallic nanoparticles combined with particle-induced X-ray emission effect. Nanotechnology. 2010;21(42):425102.

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Sung JH, Ji JH, Song KS, Lee JH, Kang CS, Yu IJ. In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Saf Health Work. 2011;2(1):34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kora AJ, Sashidhar RB. Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: antibacterial activity, cytotoxicity and its mode of action. Arabian J Chem. 2018;11(3):313–23.

    Article  CAS  Google Scholar 

  • Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2012;90:173–6.

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Barsainya M, Singh DP. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. Environ Sci Pollut Res. 2017;24(5):4645–54.

    Article  CAS  Google Scholar 

  • Lacave JM, Vicario-Parés U, Bilbao E, Gilliland D, Mura F, Dini L, Cajaraville MP, Orbea A. Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels. Sci Total Environ. 2018;642:1209–20.

    Article  CAS  PubMed  Google Scholar 

  • Lim Z-ZJ, Li J-EJ, Ng C-T, Yung L-YL, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 2011;32(8):983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macdonald JS. Toxicity of 5-fluorouracil. Oncology. 1999;13(7 Suppl 3):33–4.

    CAS  PubMed  Google Scholar 

  • Mal J, Veneman WJ, Nancharaiah YV, van Hullebusch ED, Peijnenburg WJ, Vijver MG, Lens PN. A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicology. 2017;11(1):87–97.

    Article  CAS  PubMed  Google Scholar 

  • Manimaran M. A review on nanotechnology and its implications in agriculture and food industry. Asian J Plant Sci Res. 2015;5(7):13–5.

    CAS  Google Scholar 

  • Manzoor M, Khan AHA, Ullah R, Khan MZ, Ahmad I. Environmental epidemiology of cancer in South Asian population: risk assessment against exposure to polycyclic aromatic hydrocarbons and volatile organic compounds. Arabian J Sci Eng. 2016;41(6):2031–43.

    Article  CAS  Google Scholar 

  • Mao X, Seidlitz E, Truant R, Hitt M, Ghosh HP. Re-expression of TSLC1 in a non-small-cell lung cancer cell line induces apoptosis and inhibits tumor growth. Oncogene. 2004;23(33):5632–42.

    Article  CAS  PubMed  Google Scholar 

  • Mei N, Zhang Y, Chen Y, Guo X, Ding W, Ali SF, Biris AS, Rice P, Moore MM, Chen T. Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environ Mol Mutagen. 2012;53(6):409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minai L, Yeheskely-Hayon D, Yelin D. High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation. Scient Rep. 2013;3:2146.

    Article  Google Scholar 

  • Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. 2016;8(25):12444–70.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Sushma V, Patra S, Barui AK, Bhadra MP, Sreedhar B, Patra CR. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology. 2012;23(45):455103.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee S, Vinothkumar B, Prashanthi S, Bangal PR, Sreedhar B, Patra CR. Potential therapeutic and diagnostic applications of one-step in situ biosynthesized gold nanoconjugates (2-in-1 system) in cancer treatment. RSC Adv. 2013;3(7):2318–29.

    Article  CAS  Google Scholar 

  • Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, Vinothkumar B, Bhadra MP, Sreedhar B, Patra CR. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4(3):316–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Dasari M, Priyamvada S, Kotcherlakota R, Bollu VS, Patra CR. A green chemistry approach for the synthesis of gold nanoconjugates that induce the inhibition of cancer cell proliferation through induction of oxidative stress and their in vivo toxicity study. J Mater Chem B. 2015;3(18):3820–30.

    Article  CAS  PubMed  Google Scholar 

  • Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12(3):788–800.

    Article  CAS  Google Scholar 

  • Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Saravanan M, Ubaid MF, Ali M, Shinwari ZK. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine. 2016;12(23):3157–77.

    Article  CAS  Google Scholar 

  • Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Khan MA, Shinwari ZK. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol. 2017;101(9):3551–65.

    Article  CAS  PubMed  Google Scholar 

  • Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Sadiq A, Ullah F, Shinwari ZK. Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: present status and future opportunities. Front Aging Neurosci. 2018a;10:284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci. 2018b;19(12):4100.

    Article  PubMed Central  Google Scholar 

  • Padinjarathil H, Joseph MM, Unnikrishnan BS, Preethi GU, Shiji R, Archana MG, Maya S, Syama HP, Sreelekha TT. Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility. Int J Biol Macromol. 2018;118:1174–82.

    Article  CAS  PubMed  Google Scholar 

  • Panda KK, Achary VM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro. 2011;25(5):1097–105.

    Article  CAS  PubMed  Google Scholar 

  • Papavlassopoulos H, Mishra YK, Kaps S, Paulowicz I, Abdelaziz R, Elbahri M, Maser E, Adelung R, Röhl C. Toxicity of functional nano-micro zinc oxide tetrapods: impact of cell culture conditions, cellular age and material properties. PLoS One. 2014;9(1):e84983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park Y. New paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol Res. 2014;30(3):169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra CR, Mukherjee S, Kotcherlakota R. Biosynthesized silver nanoparticles: a step forward for cancer theranostics? Nanomedicine. 2014;9(10):1445–8.

    Article  CAS  PubMed  Google Scholar 

  • Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C. 2015;53:298–309.

    Article  CAS  Google Scholar 

  • Rahman S, Rahman L, Khalil AT, Ali N, Zia D, Ali M, Shinwari ZK. Endophyte-mediated synthesis of silver nanoparticles and their biological applications. Appl Microbiol Biotechnol. 2019;103:1–19.

    Article  CAS  Google Scholar 

  • Rai M, Ingle AP, Birla S, Yadav A, Santos CA. Strategic role of selected noble metal nanoparticles in medicine. Crit Rev Microbiol. 2016;42(5):696–719.

    CAS  PubMed  Google Scholar 

  • Rao PV, Gan SH. Recent advances in nanotechnology-based diagnosis and treatments of diabetes. Curr Drug Metab. 2015;16(5):371–5.

    Article  CAS  PubMed  Google Scholar 

  • Roy N, Mondal S, Laskar RA, Basu S, Begum NA. Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents. Colloids Surf B Biointerfaces. 2010;76(1):317–25.

    Article  CAS  PubMed  Google Scholar 

  • Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, Fernandes TF, Jepson M, van Aerle R, Tyler CR. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci. 2010;115(2):521–34.

    Article  CAS  PubMed  Google Scholar 

  • Shah A, Lutfullah G, Ahmad K, Khalil AT, Maaza M. Daphne mucronata-mediated phytosynthesis of silver nanoparticles and their novel biological applications, compatibility and toxicity studies. Green Chem Lett Rev. 2018;11(3):318–33.

    Article  CAS  Google Scholar 

  • Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR, Sabzevari O. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013;51(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target. 2018;26(8):617–32.

    Article  CAS  PubMed  Google Scholar 

  • Silva-De Hoyos LE, Sánchez-Mendieta V, Camacho-López MA, Trujillo-Reyes J, Vilchis-Nestor AR. Plasmonic and fluorescent sensors of metal ions in water based on biogenic gold nanoparticles. Arabian J Chem. 2018. https://doi.org/10.1016/j.arabjc.2018.02.016.

  • Singh P, Kim YJ, Singh H, Wang C, Hwang KH, Farh ME, Yang DC. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int J Nanomed. 2015;10:2567–77.

    CAS  Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–99.

    Article  CAS  PubMed  Google Scholar 

  • Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol. 2017;15(1):65.

    Article  CAS  Google Scholar 

  • Sufian MM, Khattak JZK, Yousaf S, Rana MS. Safety issues associated with the use of nanoparticles in human body. Photodiagn Photodyn Ther. 2017;19:67–72.

    Article  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ. Relating nanomaterial properties and microbial toxicity. Nanoscale. 2013;5(2):463–74.

    Article  CAS  PubMed  Google Scholar 

  • Sweeney SF, Woehrle GH, Hutchison JE. Rapid purification and size separation of gold nanoparticles via diafiltration. J Am Chem Soc. 2006;128(10):3190–7.

    Article  CAS  PubMed  Google Scholar 

  • Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373–84.

    CAS  PubMed  Google Scholar 

  • Tessier PM, Velev OD, Kalambur AT, Lenhoff AM, Rabolt J, Kaler EW. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Adv Mater. 2001;13(6):396–400.

    Article  CAS  Google Scholar 

  • Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Prev Biomark. 2016;25(1):16–27.

    Article  Google Scholar 

  • Velayutham M, Villamena FA, Fishbein JC, Zweier JL. Cancer chemopreventive oltipraz generates superoxide anion radical. Arch Biochem Biophys. 2005;435(1):83–8.

    Article  CAS  PubMed  Google Scholar 

  • Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA. Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol. 2016;100(6):2555–66.

    Article  CAS  PubMed  Google Scholar 

  • WHO. Obesity and overweight fact sheet. 2017. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed 1 Jul 2018.

  • Zhang D, Zhao YX, Gao YJ, Gao FP, Fan YS, Li XJ, Duan ZY, Wang H. Anti-bacterial and in vivo tumor treatment by reactive oxygen species generated by magnetic nanoparticles. J Mater Chem B. 2013;1(38):5100–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ovais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ovais, M., Khalil, A.T., Ayaz, M., Ahmad, I. (2019). Biosynthesized Metallic Nanoparticles as Emerging Cancer Theranostics Agents. In: Rai, M., Jamil, B. (eds) Nanotheranostics. Springer, Cham. https://doi.org/10.1007/978-3-030-29768-8_11

Download citation

Publish with us

Policies and ethics