Skip to main content

Part of the book series: Foundations in Signal Processing, Communications and Networking ((SIGNAL,volume 22))

  • 399 Accesses

Abstract

Research on SatCom nowadays aims at high data television broadcast and on-demand data transfer at a total rate ranging from several gigabit for mobile services up to one terabit for fixed terminals (Gayrard, Proceedings of the 1st international conference on advances in satellite and space communications SPACOMM, 2009; Thompson et al., Proceedings of the 3rd international conference on advances in satellite and space communications. IARIA XPS Press, Budapest, pp. 12–19, 2011; Vidal et al., Proceedings of the 1st AESS European conference on satellite telecommunications ESTEL, 2012; Duflos et al., Approaching the Terabit/s Satellite: A System Study. Executive Summary 1, Revision 1, ESA Contract No:. 4000103563, 2012). To pursue this goal, researchers have strengthened investigations to increase the number of spotbeams for geostationary earth orbit GEO satellites, increase the frequency reuse, and use higher frequency bands. For example, the S-band (2–4 GHz) and Ka-band (20–30 GHz) technologies gained importance over the L-band (1–2 GHz) and the Ku-band (12–14 GHz) for mobile and fixed terminal applications, respectively, because it allows to realize smaller transmit and receive apertures (Panagopoulos et al., IEEE Commun Surv Tutorials 6:2, 2004). The Ku-band and other bands above 10 GHz have also been investigated for mobile SatCom services (Arapoglou et al., Int J Satell Commun Netw 30:1, 2012; Liolis et al., IEEE Trans Veh Technol 59:1109, 2010), e.g., for trains, cars, and boats, such that mobile and fixed terminals may be served simultaneously in these bands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interference becomes severe if the frequency reuse factor is one, i.e., the same bands are used in all cells, or the beamwidth is decreased below the usually assigned 3 dB area.

  2. 2.

    For multiple frequency bands, the model results in parallel vector BCs for the distinct frequency bands. These parallel BCs can be combined to a Multiple-input multiple-output (MIMO) BC model if the satellite and the terminals allow for carrier cooperation [303]. Carrier cooperation requires sufficiently different channels in the different bands to gain in performance over separately treating the different bands [304].

  3. 3.

    Mobile and fixed terminal data services use the DVB-SH [305] and the DVB-S2 standards [306].

  4. 4.

    A spotbeam may also be created by an adaptive phased-array architecture.

  5. 5.

    A rank-one covariance matrix is used in [141, 143] for a low-complex robust physical layer design. Beamformer designs for a full-rank channel covariance matrix are used in [63, 146].

  6. 6.

    With up to 121 spotbeams and simultaneously served terminals in one frequency band, multi-spotbeam SatCom systems are larger than common terrestrial systems, e.g., Wi-Fi and LTE.

  7. 7.

    The same holds for the computational complexity of the beamformer computation (cf. Sect. 4.7).

  8. 8.

    Vice versa, if one was aware of e k, the probability would be the CDF of σ kζ rain,k at g k(t, e k).

  9. 9.

    The conditioning is removed due to independence of ζ rain,k and e k.

  10. 10.

    This holds if all α k are sufficiently large, e.g., \(\|\boldsymbol {C}_k^{-1/2}\bar {\boldsymbol {h}}_k\|{ }_2^{2}>d_k(\alpha _k)\) must be satisfied for (6.18).

  11. 11.

    The optimal α 0 for K = 7 terminals and low rain fading shows the same behavior as for K = 3.

  12. 12.

    The equal probability restriction is used for the outer optimization of α = α 01.

References

  1. P.D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, R. De Gaudenzi, MIMO over satellite: a review. IEEE Commun. Surv. Tutorials 13(1), 27 (2011)

    Article  Google Scholar 

  2. K.Y. Wang, A.C. So, T.H. Chang, W.K. Ma, C.Y. Chi, Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans. Signal Process. 62(21), 5690 (2014)

    Article  MathSciNet  Google Scholar 

  3. D. Christopoulos, S. Chatzinotas, G. Zheng, J. Grotz, B. Ottersten, Linear and nonlinear techniques for multibeam joint processing in satellite communications. EURASIP J. Wirel. Commun. Netw. 1(162), 1 (2012)

    Google Scholar 

  4. L. Cottatellucci, M. Debbah, E. Casini, R. Rinaldo, R. Mueller, M. Neri, G. Gallinaro, Interference mitigation techniques for broadband satellite system, in Proceedings of the 24th AIAA International Communications Satellite Systems Conference ICSSC 2006 (2006)

    Google Scholar 

  5. J. Arnau, B. Devillers, C. Mosquera, A. Pérez-Neira, Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures. EURASIP J. Wirel. Commun. Netw. 1(132), 1 (2012)

    Google Scholar 

  6. G. Zheng, S. Chatzinotas, B. Ottersten, Generic optimization of linear precoding in multibeam satellite systems. IEEE Trans. Wirel. Commun. 11(6), 2308 (2012)

    Google Scholar 

  7. X. Lei, L. Cottatellucci, S. Ghanem, Adaptive beamforming in mobile, massively multiuser satellite communications: a system perspective, in Proceedings of the 13th International Workshop on Signal Processing for Space Communications SPSC (2014), pp. 51–58

    Google Scholar 

  8. P.D. Arapoglou, E. Michailidis, A. Panagopoulos, A. Kanatas, R. Prieto-Cerdeira, The land mobile earth-space channel. IEEE Veh. Technol. Mag. 6(2), 44 (2011)

    Article  Google Scholar 

  9. B. Devillers, A. Pérez-Neira, C. Mosquera, Joint linear precoding and beamforming for the forward link of multi-beam broadband satellite systems, in Proceedings of the IEEE Global Communications Conference GLOBECOM (2011)

    Google Scholar 

  10. A. Gründinger, A. Barthelme, M. Joham, W. Utschick, Mean square error beamforming in SatCom: uplink-downlink duality with per-feed constraints, in Proceedings of the 11th International Symposium on Wireless Communication Systems ISWCS (2014), pp. 600–605

    Google Scholar 

  11. A. Gharanjik, B. Shankar, P.D. Arapoglou, M. Bengtsson, B. Ottersten, Robust precoding with phase uncertainty, in Proceedings of the 39th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2015), pp. 3083–3087

    Google Scholar 

  12. A. Gründinger, M. Joham, W. Utschick, Bounds on optimal power minimization and rate balancing in the satellite downlink, in Proceedings of the IEEE International Conference on Communications ICC (2012), pp. 3600–3605

    Google Scholar 

  13. A. Gründinger, D. Leiner, M. Joham, C. Hellings, W. Utschick, Ergodic robust rate balancing for rank-one vector broadcast channels via sequential approximations, in Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing ICASSP (2013), pp. 4744–4748

    Google Scholar 

  14. A. Gründinger, J. Pickart, M. Joham, W. Utschick, A probabilistic downlink beamforming approach with multiplicative and additive channel errors, in Proceedings of the 49th Annual Conference on Information Sciences and Systems, Baltimore, MD (2015)

    Google Scholar 

  15. J.P. Imhof, Computing the distribution of quadratic forms in normal variables. Biometrika 48(3/4), 419 (1961)

    Article  MathSciNet  Google Scholar 

  16. A. Panagopoulos, P.D. Arapoglou, P. Cottis, Satellite communications at Ku, Ka, and V bands: propagation impairments and mitigation techniques. IEEE Commun. Surv. Tutorials 6(3), 2 (2004)

    Article  Google Scholar 

  17. ITU-R Recommendation P.618-11. Propagation data and prediction methods required for the design of earth-space telecommunication systems, Geneva (2013), http://www.itu.int/rec/R-REC-P.618/en

  18. D.P. Bertsekas, Nonlinear Programming (Athena Scientific, Belmont, MA, 1999)

    Google Scholar 

  19. N. Letzepis, A. Grant, Capacity of the multiple spot beam satellite channel with Rician fading. IEEE Trans. Inf. Theory 54(11), 5210 (2008)

    Article  MathSciNet  Google Scholar 

  20. J.D. Gayrard, Terabit satellite: myth or reality?, in Proceedings of the 1st International Conference on Advances in Satellite and Space Communications SPACOMM (2009)

    Google Scholar 

  21. A. Duflos, B. Evans, P. Thompson, A. Tomatis, S. Amos, A. Laurent, C. Noeldeke, G. Verlest, Approaching the Terabit/s Satellite: A System Study. Executive Summary 1, Revision 1, ESA Contract No:. 4000103563 (2012)

    Google Scholar 

  22. P.D. Arapoglou, K. Liolis, A. Panagopoulos, Railway satellite channel at Ku band and above: composite dynamic modeling for the design of fade mitigation techniques. Int. J. Satell. Commun. Netw. 30(1), 1 (2012)

    Article  Google Scholar 

  23. K. Liolis, A. Panagopoulos, S. Scalise, On the combination of tropospheric and local environment propagation effects for mobile satellite systems above 10 GHz. IEEE Trans. Veh. Technol. 59(3), 1109 (2010)

    Article  Google Scholar 

  24. S.K. Sharma, S. Chatzinotas, B. Ottersten, Cognitive beamhopping for spectral coexistence of multibeam satellites. Int. J. Satell. Commun. Netw. 33(1), 69–91 (2014)

    Article  Google Scholar 

  25. M. Diaz, N. Courville, C. Mosquera, G. Liva, G. Corazza, Non-linear interference mitigation for broadband multimedia satellite systems, in Proceedings of the International Workshop on Satellite and Space Communications (2007), pp. 61–65

    Google Scholar 

  26. N. Zorba, M. Realp, A. Pérez-Neira, An improved partial CSIT random beamforming for multibeam satellite systems, in Proceedings of the 10th International Workshop on Signal Processing for Space Communications SPSC (2008)

    Google Scholar 

  27. C. Hellings, S. Herrmann, W. Utschick, Carrier cooperation can reduce the transmit power in parallel MIMO broadcast channels with zero-forcing. IEEE Trans. Signal Process. 61(12), 3021 (2013)

    Article  MathSciNet  Google Scholar 

  28. C. Hellings, W. Utschick, Linear precoding in parallel MIMO broadcast channels: separable and inseparable scenarios, in Proceedings of the 17th International ITG Workshop on Smart Antennas WSA (2013)

    Google Scholar 

  29. P. Kelley, Overview of the DVB-SH specifications. Int. J. Satell. Commun. Netw. 27(4–5), 198 (2009)

    Article  Google Scholar 

  30. A. Morello, V. Mignone, DVB-S2: the second generation standard for satellite broad-band services. Proc. IEEE 94(1), 210 (2006)

    Article  Google Scholar 

  31. S. Rao, Parametric design and analysis of multiple-beam reflector antennas for satellite communications. IEEE Antennas Propag. Mag. 45(4), 26 (2003)

    Article  Google Scholar 

  32. T. Braun, Antenna, Chap. 3, in Satellite Communications Payload and System (Wiley/IEEE Press, New York, 2012), pp. 33–77

    Google Scholar 

  33. G. Maral, M. Bousquet, Satellite Communications Systems, 5th edn. (Wiley, England, 2009)

    Book  Google Scholar 

  34. P.D. Arapoglou, P. Burzigotti, M. Bertinelli, A. Bolea Alamanac, R. De Gaudenzi, To MIMO or not to MIMO in mobile satellite broadcasting systems. IEEE Trans. Wirel. Commun. 10(9), 2807 (2011)

    Article  Google Scholar 

  35. ITU-R Recommendation P.840-3. Attenuation due to clouds and fog. Geneva (1999), http://www.itu.int/rec/R-REC-P.840/en

  36. ITU-R Recommendation P.676-10. Attenuation by atmospheric gases. Geneva (2013), http://www.itu.int/rec/R-REC-P.676-10-201309-I/en

  37. X. Boulanger, L. Feral, L. Castanet, N. Jeannin, G. Carrie, F. Lacoste, A rain attenuation time-series synthesizer based on a Dirac and lognormal distribution. IEEE Trans. Antennas Propag. 61(3), 1396 (2013)

    Article  MathSciNet  Google Scholar 

  38. E. Lutz, A Markov model for correlated land mobile satellite channels. Int. J. Satell. Commun. 14(4), 333 (1996)

    Article  Google Scholar 

  39. ITU-R Recommendation P.681-7. Propagation data required for the design of earth-space land mobile telecommunication systems. Geneva (2009), http://www.itu.int/rec/R-REC-P.1815/en

  40. L. Xiao, L. Cottatellucci, Parametric least squares estimation for nonlinear satellite channels, in Proceedings of the 76nd IEEE Vehicular Technology Conference, Fall (2012)

    Google Scholar 

  41. S. Enserink, M. Fitz, Constrained capacities of DVB-S2 constellations in log-normal channels at Ka band, in Proceedings of the 2nd International Conference on Advances in Satellite and Space Communications (2010), pp. 93–99

    Google Scholar 

  42. G. Zheng, S. Chatzinotas, B. Ottersten, Multi-gateway cooperation in multibeam satellite systems, in Proceedings of the IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications PIMRC (2012), pp. 1360–1364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gründinger, A. (2020). Applications in Satellite Communication. In: Statistical Robust Beamforming for Broadcast Channels and Applications in Satellite Communication. Foundations in Signal Processing, Communications and Networking, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-29578-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29578-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29577-6

  • Online ISBN: 978-3-030-29578-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics