Skip to main content

The Use of Nicotiana Species in Tobacco Improvement

  • Chapter
  • First Online:

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

There are more than 80 naturally occurring relatives of cultivated tobacco (Nicotiana tabacum L.) in the genus Nicotiana. In this review, we examine how and to what extent these natural germplasm resources have been utilized in hybridization and introgression experiments over the past century. To date, more than 400 interspecific Nicotiana hybrids have been reported. We focus on individual Nicotiana species involved in interspecific hybrids with cultivated tobacco produced by sexual and asexual methods, including the recently discovered grafting method. Problems related to the hybridization of N. tabacum with other species, namely, cross-incompatibility, maternal phenotypes in hybrid offspring, interspecific incongruity, lethality of juvenile hybrids, and sterility of viable hybrids, are reviewed. Among the 58 interspecific hybrids involving N. tabacum reported thus far, 25 were also reported as somatic hybrids and two were obtained only as somatic hybrids. Thirty-six sterile sexual F1 hybrids were converted to fertile or partly fertile allopolyploids. Sixteen Nicotiana species have been deployed as a source of usable traits that were introgressed into N. tabacum, offering resistance to or tolerance of pathogens or pests. The mechanisms of introgression, such as alien addition and substitution, as well as the barriers and limitations of introgression, including erratic inheritance and adverse linkages, are discussed. Thirty-one Nicotiana species used as sources of cytoplasmic male sterility in N. tabacum have produced multiple alloplasmics; most showed negative effects of alien cytoplasm but a few have been deployed successfully in hybrid cultivars of N. tabacum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahuja MR (1962) A cytogenetic study of heritable tumors in Nicotiana species hybrids. Genetics 47:865–880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amankwa GA, Mishra S, Shearer AD, Van Hooren DL (2014) Evaluation of two flue-cured tobacco F1 hybrids with different sources of male sterile cytoplasm. CORESTA Congress Quebec, Canada APPOST02

    Google Scholar 

  • Apple JL (1962) Transfer of resistance to black shank (Phytophthora parasitica var. Nicotianae) from Nicotiana. Phytopathology 52:1

    Google Scholar 

  • Apple JL (1967) Occurrence of race 1 Phytophthora parasitica var. nicotianae in North Carolina and its implications. Tob Sci 11:79–83

    Google Scholar 

  • Atanassov A, Dimantov D, Atanassov I et al (1991) Transfer of resistance to tomato spotted wilt virus/TSWV/from wild Nicotiana species to N. tabacum via somatic hybridisation. Physiol Plant 82:A23

    Google Scholar 

  • Atanassov II, Atanassova SA, Dragoeva AI, Atanassov AI (1998) A new CMS source in Nicotiana developed via somatic cybridization between N. tabacum and N. alata. Theor Appl Genet 97:982–985

    CAS  Google Scholar 

  • Bai DP, Reeleder R, Brandle JE (1996) Production and characterization of tobacco addition lines carrying Nicotiana debneyi chromosomes with a gene for resistance to black root rot. Crop Sci 36:852–857

    Google Scholar 

  • Bailov D, Palakarcheva M, Daskalov S (1964) Novi amfidiplodi Nicotiana tabacum × N. debneyi Dom. Rastienievod Nauki 7:3–16

    Google Scholar 

  • Bates GW (1990) Asymmetric hybridization between Nicotiana tabacum and N. repanda by donor recipient protoplast fusion: transfer of TMV resistance. Theor Appl Genet 80:481–487

    CAS  PubMed  Google Scholar 

  • Berbeć A (1987) Cytogenetical study on Nicotiana tabacum L. cv. Nadwiślański Mały (2× and 4×) × Nicotiana alata Link et Otto hybrids. Genet Pol 28:251–261

    Google Scholar 

  • Berbeć A (1994a) Effect of Nicotiana knightiana cytoplasm on the stability of a true-breeding tobacco variety increased by selfing. CORESTA Congress Inf Bull Harare: 61

    Google Scholar 

  • Berbeć A (1994b) Microsporogenesis in two alloplasmic isonuclear strains of tobacco Nicotiana tabacum L. cv. Zamojska 4 with the cytoplasms of N. knightiana Goodspeed and N. raimondii Macbride. Genet Pol 35:23–31

    Google Scholar 

  • Berbeć A (2001) Floral morphology and some other characteristics of iso-genomic alloplasmics of Nicotiana tabacum L. Beitrage zur Tabakforschung International 19:309–314

    Google Scholar 

  • Berbeć A (2017) Three-way crosses vs. single crosses in tobacco: first agronomic assessment. Crop Sci 57:1363–1372. https://doi.org/10.2135/cropsci2016.07.0624

    Article  Google Scholar 

  • Berbeć A, Berbeć J, Doroszewska T (1990) Graded effects of four alien cytoplasms in Nicotiana tabacum L. Bul Spec CORESTA, 1990, Symposium Kallithea: 143 A34

    Google Scholar 

  • Berbeć A, Doroszewska T (1981) Investigations of the interspecific hybrid Nicotiana amplexicaulis Burbidge × Nicotiana tabacum. Genet Pol 22:197–207

    Google Scholar 

  • Berbeć A, Doroszewska T (1992) Alloplazmatyczne formy tytoniu uprawnego (Nicotiana tabacum L.) z podstawioną cytoplazmą gatunków Nicotiana amplexicaulis, N. knightiana i N. raimondii. Pam Puł 100:141–150

    Google Scholar 

  • Berbeć A, Głażewska Z (1988) Transfer of resistance to Potato Virus Y from Nicotiana benavidesii Goodspeed to N. tabacum L. Genet Pol 29:323–333

    Google Scholar 

  • Berbeć A, Laskowska D (1997) Compatibility and tentoxin sensitivity in the off-spring of near-amphihaploid hybrid Nicotiana tabacum × N. alata. J Appl Genet 38:143–150

    Google Scholar 

  • Berbeć A, Laskowska D (2005) Investigations of isogenomic alloplasmics of flue-cured tobacco Nicotiana tabacum cv. Wislica. Beitrage zur Tabakforschung Int 21:258–263

    Google Scholar 

  • Berbeć J (1966) Investigations on the cross Nicotiana glauca × N. tabacum. Badania nad krzyżówką Nicotiana glauca × N. tabacum (in Polish) Inf PAN 7–213:340

    Google Scholar 

  • Berbeć J (1967) Cytoplasmic male sterile variety of cultivated tobacco (Nicotiana tabacum L.) Cytoplazmatycznie męskosterylna odmiana tytoniu uprawnego (Nicotiana tabacum L.) (in Polish) Inf. PAN, I 7–195:299–300

    Google Scholar 

  • Berbeć J (1972) Investigations into male sterility of tobacco and its utilisation in hybrid seed production (in Russian). Intl Symp Mutual Economic Assistance Council (RWPG), Warsaw, 9–13 May 1972, pp 1–5

    Google Scholar 

  • Berbeć J (1974) A cytoplasmic male sterile mutation form of Nicotiana tabacum L. Zeitschrift fur Pflanzenzuchtung 73:204–216

    Google Scholar 

  • Berbeć J (1975) Investigations on the utilization of the cytoplasmically inherited male sterile strain of tobacco in the F1 hybrid seed production. Z Pflanzenziicht 74:28–38

    Google Scholar 

  • Berbeć J, Berbeć A (1976) Growth and development of Nicotiana tabacum L. form reconstituted on the cytoplasm of Nicotiana glauca Grah. Genet Pol 17:309–318

    Google Scholar 

  • Berbeć J, Berbeć A (1992) Męska jałowość u tytoniu (Nicotiana tabacum L.) uzyskana drogą jednoetapowego podstawienia cytoplazmy gatunku Nicotiana eastii Kostoff. Pam Puł 100:136–139

    Google Scholar 

  • Berbeć J, Berbeć A, Glazewska Z, Opoka B, Kobus I, Czop T (1982) Investigations on obtaining new varieties and breeding lines of Nicotiana tabacum resistant to virus leaf rib necrosis (Potato Virus Y) and virus degeneration of plants by Lycopersicum virus 3. USDA Grant no. FG-Po-341 (JB-6) Final Report, Institute of Soils Science and Plant Cultivation, Pulawy, Poland (unpublished)

    Google Scholar 

  • Bezova K, Skula K (1980) Fertile and sterile forms of VP9. Bul Tabak Priem 23:19–31

    Google Scholar 

  • Biskup J, Mazur M, Roman T (1972) Ocena wzrostu i rozwoju oraz niektorych cech uzytkowych odmian i mieszancow plodnych w porownaniu z analogicznymi formami meskojalowymi. Biul Centralnego Laboratorium Przemysłu Tytoniowego (3-4):29–40

    Google Scholar 

  • Bombarely A, Edwards KD, Sanchez-Tamburrino J, Mueller LA (2012) Deciphering the complex leaf transcriptome of the allotetraploid species Nicotiana tabacum: a phylogenomic perspective. Genomics 13:406

    Google Scholar 

  • Bomblies K (2009) Too much of a good thing? Hybrid necrosis as a by-product of plant immune system diversification. Botany 87:1013–1022

    CAS  Google Scholar 

  • Brandle JE, Court WA, Gleddie S (1992) The application of somatic hybridization to a tobacco breeding program. Tob Chem Res Conf 46:30, abstr. 17

    Google Scholar 

  • Brieger F (1928) Uber die Vermehrung der Chromosomenzahl bei dem Bastard Nicotiana tabacum L. × Rusbyi Britt. Zeitschrift Inductive Abstam u Vererbungsl 47:1–53

    Google Scholar 

  • Bukuta L (2002) Determination of allelism between different sources of Black Shank race 0 (Phytophthora Nicotianae) resistance and Linkage studies between Black Shank race 0 and Angular Leaf Spot race 1 (Pseudomonas syringae pv. tabaci Tox-) resistance in tobacco (Nicotiana tabacum). CORESTA Study Grant Report, CORESTA Congress New Orleans

    Google Scholar 

  • Burbidge NT (1960) The Australian species of Nicotiana. Aust J Bot 8:342–380

    Google Scholar 

  • Burk LG (1960) Male-sterile flower anomalies in interspecific tobacco hybrids. J Hered:27–31

    Google Scholar 

  • Burk LG (1967) An interspecific bridge-cross—Nicotiana repanda through N. sylvestris to N. tabacum. J Hered 58:215–218

    Google Scholar 

  • Burk LG, Durbin RD (1978) Reaction of Nicotiana species to tentoxin. J Hered 69:117–120

    Google Scholar 

  • Burk LG, Chaplin JF (1979) Hybridization (in) Nicotiana. Procedures for experimental use (ed. RD Durbin) USDA Tech Bul 1586:23–27

    Google Scholar 

  • Burk LG, Heggestad HE (1966) The genus Nicotiana as a source of resistance to diseases of cultivated tobacco. Econ Bot 20:76–88

    Google Scholar 

  • Burk LG, Neas MO (1966) 4n (N. tabacum × N. nudicaulis, a colchicine induced fertile hybrid. Tob Sci 8:65–66

    Google Scholar 

  • Burk LG, Dean CE (1975) Hybrid fertility and aphid resistance in the cross Nicotiana tabacum × N. gossei. Euphytica 24:59–63

    Google Scholar 

  • Burk LG, Gerstel DU, Wernsman EA (1979) Maternal haploids of Nicotiana tabacum L. Science 206:586

    Google Scholar 

  • Burk LG, Gooding GV, Chaplin JF (1982) Reaction of Nicotiana species and cultivars or breeding lines of Nicotiana tabacum to three strains of Potato Virus Y. Tob Sci 26:85–88

    Google Scholar 

  • Busconi M, Reggi S, Lorenzoni C, Fogher C (2010) Interspecific crosses in the genus Nicotiana. In: Proceedings of the 54th Italian Society of Agricultural Genetics Annu Congress, Post 7.02

    Google Scholar 

  • Butenko RG, Luneva MZ (1966) Application of the sterile culture technique for the culturing of distant hybrids of Nicotiana. Пpимeнeниe мeтoдa cтepильныx кyльтyp для выpaщивaния oтдaлeнныx гибpидoв Nicotiana (in Russian) Fizjologija Rastenij 13:733–736

    Google Scholar 

  • Cameron DR (1958) Alien substitution of a locus affecting immunity to black shank in Nicotiana tabacum. Proc X Int Congr Genet Univ Toronto 2:41

    Google Scholar 

  • Campbell KG, Wernsmann EA, Fitzmaurice WP, Burns JA (1994) Construction of a designer chromosome in tobacco. Theor Appl Genet 87:837–842

    CAS  PubMed  Google Scholar 

  • Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci 69:2292–2294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin JF (1959) Interspecific hybridization, gene transfer and chromosomal substitution in Nicotiana. PhD thesis, North Carolina State University, Raleigh

    Google Scholar 

  • Chaplin JF (1962) Transfer of black shank resistance from Nicotiana plumbaginifolia to flue-cured N. tabacum. Tob Sci 6:184–189

    Google Scholar 

  • Chaplin JF (1964) Use of male sterile tobaccos in the production of hybrid seed. Tob Sci 8:105–109

    Google Scholar 

  • Chaplin JF, Burk LG (1971) Interspecific hybridization and gene transfer in Nicotiana: problems and possible solutions. Fifth Int Tob Sci Congr, Hamburg, Germany Proc. 59:67

    Google Scholar 

  • Chaplin JF, Ford ZT (1965) Agronomic and chemical characteristics of male-sterile flue-cured tobacco as influenced by cytoplasms of different Nicotiana species. Crop Sci 5:436–438

    Google Scholar 

  • Chaplin JF, Mann TJ (1961) Interspecific hybridization, gene transfer and chromosomal substitution in Nicotiana. North Carolina Agric Exp Sta Tech Bull 128

    Google Scholar 

  • Chaplin JF, Mann TJ (1978) Evaluation of tobacco mosaic resistance factor transferred from burley to flue-cured tobacco. J Hered 69:175–178

    Google Scholar 

  • Chaplin JF, Mann TJ, Apple JL (1961) Some effects of the Nicotiana glutinosa type of mosaic resistance on agronomic characters of flue-cured tobacco. Tob Sci 5:80–83

    Google Scholar 

  • Chaplin JF, Matzinger DF, Mann TJ (1966) Influence of the homozygous and heterozygous mosaic-resistance factor on quantitative character of flue-cured tobacco. Tob Sci 10:81–84

    Google Scholar 

  • Chase MW, Knapp S, Cox AV et al (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot 92:107–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Luo J, Li W, Xiao B, Li Y (2012) Flow cytometry assisted selection on a CMS source (Nta(gla.)S) of flue-cured tobacco via somatic hybridisation. CORESTA Congress, Sapporo, 2012 AP 06

    Google Scholar 

  • Chimoyo HM, Pupert EA (1988) The effect of UV irradiation, toluidine blue, and environment on maternal haploid frequencies from the cross between Nicotiana tabacum and N. africana. Bull Spec

    Google Scholar 

  • Christoff M (1928) Cytological studies in the genus Nicotiana. Genetics 13:233–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung SC, Yoshida KT, Takeda G (1996) Reproductive characteristics of amphidiploids derived from an interspecific hybrid between Nicotiana trigonophylla Dun. and N. tabacum L. Jpn J Breed 46:29–33

    Google Scholar 

  • Clarkson and Symon (1991) Nicotiana wuttkei (Solanaceae), a new species from north-eastern Queensland with an unusual chromosome number. Austrobaileya 3(3): 389-392

    Google Scholar 

  • Clausen RE, Cameron DR (1944) Inheritance in Nicotiana tabacum. XVIII. Monosomic analysis. Genetics 29:447–477

    Google Scholar 

  • Clausen RE, Cameron DR (1957) Inheritance in Nicotiana tabacum. XXVIII. The cytogenetics of introgression. Proc Nat Acad Sci USA 43:908–913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen RE, Goodspeed TH (1925) Interspecific hybridization in Nicotiana. II. A tetraploid glutinosa-tabacum hybrid, an experimental verification of Winge’s hypothesis. Genetics 10:278–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen RE, Mann MC (1924) Inheritance in Nicotiana tabacum. V. The occurrence of haploid plants in interspecific progenies. Proc Nat Acad Sci 1O:121–124

    Google Scholar 

  • Clayton EE (1947) A wildfire resistant tobacco. J Hered 38:35–40

    CAS  PubMed  Google Scholar 

  • Clayton EE (1950) Male sterile tobacco. J Hered 4:171–175

    Google Scholar 

  • Clayton EE (1958) The genetics and breeding progress in tobacco during the last 50 years. Agron J 50:352–356

    Google Scholar 

  • Clayton EE (1968) The transfer of blue mold resistance to tobacco from Nicotiana debneyi. Part IV. Breeding progress 1957–1967. Tob Sci 12:112–124

    Google Scholar 

  • Clayton EE (1969) The study of resistance to the black root disease of tobacco. Tob Sci 13:30–37

    Google Scholar 

  • Clayton EE, Heggestad HE, Grosso JJ, Burk LG (1967) The transfer of blue mold resistance to tobacco from Nicotiana debneyi. Part I. Breeding Progress 1937–1954. Tob Sci 11:91–99

    Google Scholar 

  • Collins GB, Legg PD (1969) Cytogenetics of a Burley tobacco breeding line derived from a cross with Nicotiana longiflora Cav. Can J Genet Cytol 11(2):382–388

    Google Scholar 

  • Corbaz R (1962) Research on the control of blue mould of tobacco. Bull Inf. CORESTA:9–19, CORESTA Congress Guangzhou:71 AP-2

    Google Scholar 

  • Crowder BJ, Wilkinson CA, Johnson CS, Eisenbach JD (2003) Inheritance of resistance to tobacco cyst nematode in flue-cured tobacco. Crop Sci 43:1305–1312

    Google Scholar 

  • Czubacka A, Depta A, Doroszewska T (2016) Agronomic performance of cytoplasmic male sterile forms of flue-cured tobacco. CORESTA Congress, Berlin, APPOST, p 08

    Google Scholar 

  • D’Arcy WG (1976) New names and taxa in Solanaceae. Ann Mo Bot Gard 63: 363–369

    Google Scholar 

  • Desprez B, Chupeau MK., Vermeulen A et al (1992) A Nicotiana gametosomatic hybrid and its progenies. J Exp Bot 43(248):419–425

    Google Scholar 

  • DeVerna JW (1984) In vitro-facilitated wide hybridization in Nicotiana. PhD Dissertation, University of Kentucky, Lexington

    Google Scholar 

  • DeVerna JW, Myers JR, Collins GB (1987) Bypassing prefertilization barriers to hybridization in Nicotiana using in vitro pollination and fertilization. Theor Appl Genet 73:665–671

    CAS  PubMed  Google Scholar 

  • Dodsworth SA (2015) Genome skimming for phylogenomics. PhD thesis, School of Biological and Chemical Sciences, Queen Mary University of London

    Google Scholar 

  • Donaldson PA, Bevis E, Pandeya R, Gleddie SC (1995) Rare symmetric and asymmetric Nicotiana tabacum (+) N. megalosiphon somatic hybrids recovered by selection for nuclear-encoded resistance genes and in the absence of genome inactivation. Theor Appl Genet 91:747–755

    CAS  PubMed  Google Scholar 

  • Dorossiev L, Palakarcheva M, Jancheva A (1990) Application of in vitro methods in the development of disease resistant Oriental tobacco hybrids and lines. Genet Breed 23:306–315

    Google Scholar 

  • Dorossiev L, Palakarcheva M, Stanoyeva M Petkova M (1978) Overcoming the sterility in F1 of interspecific hybrids of the genus Nicotiana using the methods of tissue culture. Bul Spéc CORESTA, Symposium Sofia: 80–81 (P03)

    Google Scholar 

  • Doroszewska T (2010) Transfer of tolerance to different Potato virus Y (PVY) isolates from Nicotiana africana Merxm. to Nicotiana tabacum L. Plant Breeding 129:76–81

    Google Scholar 

  • Doroszewska T, Berbeć A (1990) Investigations of the hybrids of Nicotiana tabacum L. × Nicotiana africana Merxm. Bul. Spec. CORESTA Symposium Kallithea, Greece:176, P19

    Google Scholar 

  • Doroszewska T, Berbeć A (1999) Transfer of resistance to Potato Virus Y to tobacco cultivars. CORESTA Meet. Agro-Phyto Groups, Suzhou, China AP4

    Google Scholar 

  • Doroszewska T, Berbeć A (2000) Cytogenetical investigations of poliploid interspecific hybrids of Nicotiana africana with different cultivars of N. tabacum. J Genet Breed 54:77–82

    Google Scholar 

  • Doroszewska T, Krasnodębska-Depta A, Czubacka A (2009) Album of Nicotiana species. Puławy Instytut Uprawy Nawożenia i Gleboznawstwa—Państwowy Instytut Badawczy

    Google Scholar 

  • Doroszewska T, Przybyś M (2007) Characterization of Nicotiana species resistance to black root rot (Thielaviopsis basicola (Berk. and Broome) Ferr). Charakterystyka odporności gatunków Nicotiana na czarną zgniliznę korzeni (Thielaviopsis basicola (Berk. and Broome) Ferr. Zeszyty Problemowe Nauk Rolniczych 517:253–266

    Google Scholar 

  • Drake K, Lewis RS (2013) An Introgressed Nicotiana rustica genomic region confers resistance to Phytophthora Nicotianae in Cultivated Tobacco. Crop Sci 53:1366–1374

    CAS  Google Scholar 

  • Drake KE, Moore JM, Bertrand P, Fortnum B, Peterson P, Lewis RS (2015) Black shank resistance and agronomic performance of flue-cured tobacco lines and hybrids carrying the introgressed Nicotiana rustica region, Wz. Crop Sci 55:79–86

    Google Scholar 

  • Dudek M (1971) Effect of the debneyi i megalosiphon sterile cytoplasms on some traits of the hybrids in backcrosses to several tobacco varieties (in Polish). Biul CLPT 1–2:29–44

    Google Scholar 

  • Durbin RD, Uchytil TF (1977) A survey of plant insensitivity to tentoxin. Phytopathology 67:602–603

    Google Scholar 

  • East EM (1928) The genetics of the genus Nicotiana. Bibliograph Genet 4:243–318

    Google Scholar 

  • East EM (1930) The origin of the plants of maternal type which occur in connection with interspecific hybridizations. Proc Natl Acad Sci USA 16(6):377–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eghis SA (1927) Experiments on interspecific hybridation in the genus Nicotiana (in Russian with English summary). Bull Appl Bot Leningrad 17:151–190

    Google Scholar 

  • Eghis SA (1930) Experiments on interspecific hybridization in the genus Nicotiana. II. The fertile hybrids between N. tabacum L. and N. sylvestris Speg. and Games. Proc USSR Cong Genet Plant & Animal Breed 2

    Google Scholar 

  • Eickholt DP, Lewis RS (2014) Effect of an introgressed Nicotiana tomentosa leaf number QTL on yield and quality characteristics in flue-Cured tobacco. Crop Sci 54:1–9. https://doi.org/10.2135/cropsci2013.07.0464

    Article  Google Scholar 

  • Fardy A, Hitier H (1945) Espèces tétraploides et hybrides interspécifiques amphidiploides et triples dipoloides ed Nicotiana, obtenus par l’action de la colchicine. Mémorial du Serv d’Expl Industr des Tabacs et des Allumettes (SEITA) Ser B: 1–117

    Google Scholar 

  • Fuentes I, Stegemann S, Golczyk H, Karcher D, Bock R (2014) Horizontal genome transfer as an asexual path to the formation of new species. Nature 511:232–235

    CAS  PubMed  Google Scholar 

  • Gajos Z (1979) Attempt to use hybrids of Nicotiana tabacum L. × N. otophora Gris for breeding tobacco resistant to Peronospora tabacina Adam (PT-2) and other diseases. Próby wykorzystania mieszańców Nicotiana tabacum L. × Nicotiana otophora Gris. w hodowli tytoniu odpornego na Peronospora tabacina Adam (P-2) i inne choroby (in Polish) Biul Inf Centr Lab Przem Tyton (1–2):11–23

    Google Scholar 

  • Gajos Z (1981) Transfer of resistance to tomato spotted wilt virus from N. Nicotiana alata Link et Otto to tobacco. Przeniesienie odporności na wirus brązowej plamistości pomidora (Tomatto Spotted Wilt Virus) z Nicotiana alata Link. et Otto. do tytoniu szlachetnego przez skrzyżowanie obu gatunków (in Polish) Biul Inf Centr Lab Przem Tyton (1–2):3–24

    Google Scholar 

  • Gajos Z (1984) Genetic resistance to black root rot (Thielaviopsis basicola ferr.) of the interspecific hybrids of Nicotiana tabacum L. × Nicotiana alata link. et Otto. Genetyczna odporność na czarną zgniliznę korzeni (Thielaviopsis basicola Ferr) roślin międzygatunkowego mieszańca Nicotiana tabacum L. × Nicotiana alata Link. et Otto (in Polish). Biul Inf Centr Lab Przem Tyton 1–4:3–14

    Google Scholar 

  • Gentscheff G (1931) Investigations on interspecific hybridisation in the genus Nicotiana. Пpoyчвaния вpьxy мeждyвидoвaтa xибpидизaциa в poдa Nicotiana. Zemedlska Misl 2:91–111 (in Bulgarian)

    Google Scholar 

  • Gerstel DU (1943) Inheritance in Nicotiana tabacum. XVII. Cytogenetical analysis of glutinosa-type resistance to mosaic disease. Genetics 28:533–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstel DU (1945) Inheritance in Nicotiana tabacum. XIX. Identification of the tabacum chromosome replaced by one from N. glutinosa in mosaic-resistant Holmes Samsoun tobacco. Genetics 30:448–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstel DU (1946) Inheritance in Nicotiana tabacum XXI. The mechanism of chromosome substitution. Genetics 31:421–427

    PubMed  PubMed Central  Google Scholar 

  • Gerstel DU (1961) Chromosomal control of preferential pairing in Nicotiana. Science 133:579–580

    CAS  PubMed  Google Scholar 

  • Gerstel DU, Burk LG (1960) Controlled introgression in Nicotiana. A cytological study. Tob Sci 4:147–150

    Google Scholar 

  • Gerstel DU (1980) Cytoplasmic male sterility in Nicotiana (A review). North Carolina Agric Res Service Tech Bull 263

    Google Scholar 

  • Gerstel DU, Burns JA, Burk LG (1978) Cytoplasmic male sterility in Nicotiana, restoration of fertility and the nucleolus. Genetics 89:157–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerstel DU, Burns JA, Burk LG (1979) Interspecific hybridizations with an African tobacco, Nicotiana africana Merxm. J Hered 70:342–344

    Google Scholar 

  • Giddings GD, Rees H (1992) A Nicotiana gametosomatic hybrid and its progenies. A Nicotiana gametosomatic hybrid and its progenies. J Exp Bot 43:419–425

    Google Scholar 

  • Gillham FEM, Wark DC, Harrigan EKS (1977) Disease resistant flue-cured tobacco breeding lines for north Queensland. I. Resistance to blue mould, Peronospora tabacina. Aust J Exp Agric Anim Husb 17:652–658

    Google Scholar 

  • Goodspeed T, Bradley M (1942) Amphidiploidy. Bot Rev 8:272–316

    Google Scholar 

  • Goodspeed TH (1915) Parthenogenesis, parthenocarpy and phenospermy in Nicotiana. Calif Univ Publ Bot 5(8):249–272

    Google Scholar 

  • Goodspeed TH (1945) Cytotaxonomy of Nicotiana. Bot Rev 11:533–592

    Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica Co, Waltham, Mass

    Google Scholar 

  • Goodspeed TH, Clausen RE (1917) Mendelian factor differences versus reaction system contrasts in heredity. Amer Nat 51:31–46

    Google Scholar 

  • Goodspeed TH, Clausen RE (1928) Interspecific hybridization in Nicotiana. VIII. The sylvestris-tomentosa-tabacum triangle and its bearing on the origin of tobacco. Univ Calif Pub Bot 11:127–140

    Google Scholar 

  • Greenleaf WH (1941) Sterile amphidiploids: Their possible relation to the origin of Nicotiana tabacum. Am Nat 75:394–399

    Google Scholar 

  • Gwynn GR, Barker KR, Reilly JJ, Komm DA (1986) Genetic resistance to tobacco mosaic virus, cyst nematodes, root-knot nematodes, and wildfire from Nicotiana repanda incorporated into Nicotiana tabacum. Plant Dis 70:958–962

    Google Scholar 

  • Haji HM, Mishra S, DeVos M (2000) CT681 flue-cured tobacco. Can J Plant Sci 80:167–168

    Google Scholar 

  • Haji HM, Brammall RA, VanHooren DL (2003) Effect of the black root rot resistance gene on the yield and quality characteristics of flue-cured tobacco in Ontario. Can J Plant Sci 83(4):939–942

    Google Scholar 

  • Haji HM, Misha S, Devos M (2006) Host plant resistance management strategies for control of black root rot resistance. CORESTA Meeting Agro-Phyto Groups. Paris. PPost 08

    Google Scholar 

  • Haji HM, Mishra S, DeVos M (2007) CTH2 flue-cured tobacco F1 hybrid. Can J Plant Sci 87:383–384

    Google Scholar 

  • Hakansson G, van der M, Bonnett HT, Glimelius K (1988) Variant mitochondrial protein and DNA patterns associated with cytoplasmic male-sterile lines of Nicotiana. Theor Appl Genet 76:431–437

    Google Scholar 

  • Hakansson G, Glimelius K (1991) Extensive nuclear influence on mitochondrial transcription and genome structure in male-fertile and male-sterile alloplasmic Nicotiana materials. Mol Gen Genet 229:380–388

    CAS  PubMed  Google Scholar 

  • Hancock WG, Kuraparthy V, Kernodie SP, Lewis RS (2015) Identification of maternal haploids of Nicotiana tabacum aided by transgenic expression of green fluorescent protein: evidence for chromosome elimination in the N. tabacum × N. africana interspecific cross. Mol Breed 35:179

    Google Scholar 

  • Hancock WG, Lewis RS (2017) Heterosis, transmission genetics, and selection for increased growth rate in a N. tabacum × synthetic tobacco cross. Mol Breeding 37:53 https://doi.org/10.1007/s11032-017-0654-4

  • Hanson MR, Conde MF (1985) Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic nuclear interactions affecting male sterility in plants. Int Rev Cytol 94:213–267

    CAS  Google Scholar 

  • Hart GE (1965) Studies on extrachromosomal male sterility in Nicotiana. Dissertation Abstracts 26: 3595 (Tobacco Abstracts 10: 2108) Ph.D. Thesis Univ California, Berkley USA

    Google Scholar 

  • Holmes FO (1938) Inheritance of resistance to tobacco-mosaic disease in tobacco. Phytopathol 28:553–561

    Google Scholar 

  • Horlow C, Goujaud J, Lepingle A, Missionier C, Bourgin JP (1990) Transmission of paternal chloroplasts in tobacco (Nicotiana tabacum). Plant Cell Rep 9:249–252

    CAS  PubMed  Google Scholar 

  • Horton P (1981) A taxonomic revision of Nicotiana (Solanaceae) in Australia. J Adel Bot Gard 3:1–56

    Google Scholar 

  • Hu C (1956) Cytogenetic Studies in Nicotiana, XII. Reduction divisions in hybrids between N. langsdorffii and three other species. Jpn J Breed 6:117–121

    Google Scholar 

  • Iancheva A, Palakarcheva M (1990) Cytoplasmic male sterile hybrids with Nicotiana goodspeedii cytoplasm. Genet Breed 4:316–321

    Google Scholar 

  • Ichikawa T, Ozeki Y, Syöno K (1990) Evidence for the expression of the rol genes of Nicotiana glauca in genetic tumors of N. glauca × N. langsdorflli. Mol Gen Genet (MGG) 220(2):177–180

    Google Scholar 

  • Ilcheva V, San LH (1997) Hybridation somatique chez le gendre Nicotiana—revue bibliographique. Ann du Tabac, Sect 2(29):9–25

    Google Scholar 

  • Ilcheva V, San LH, Zagorska N, Dimitrov B (2001) Production of male sterile interspecific somatic hybrids between transgenic N. tabacum (bar) and N. rotundifolia (npt ii) and their identification by AFLP analysis. Vitro Cell Dev-Pl 37:496–502

    CAS  Google Scholar 

  • Iwai S, Kishi C, Nakata K, Kubo S (1985) Production of a hybrid of N. repanda × N. tabacum by ovule culture. Plant Sci 41:175–178

    Google Scholar 

  • Izard C, Hitier H (1955) Observations sur un hybride complexe susceptible de produire des plantes a sterilite male. Ann Du Tabac Seita, Sect 2(2):1–13

    Google Scholar 

  • Johnson ES, Wernsman EA, LaMondia JA (2009) Effect of a chromosome fragment marked by the Php gene for resistance to Phytophtora nicotianae on reproduction of tobacco cyst nematodes. Plant Dis 93:309–315

    CAS  PubMed  Google Scholar 

  • Johnson ES, Wolff MF, Wernsman EA (2002a) Marker-assisted selection for resistance to black shank disease in tobacco. Plant Dis 86:1303–1309

    CAS  PubMed  Google Scholar 

  • Johnson ES, Wolff MF, Wernsman EA, Atchley WE, Shrew HD (2002b) Origin of the black shank resistance gene, Ph, in tobacco cultivar Coker 371-Gold. Plant Dis 86:1080–1084

    CAS  PubMed  Google Scholar 

  • Julio E, Verrier JL, Dorlhac de Borne F (2006) Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet 112:335–346

    CAS  PubMed  Google Scholar 

  • Kaul MHL (1988) Male sterility in higher plants. Monogr Theor Appl Genet Springer Verlag Berlin 10

    Google Scholar 

  • Kehr AE (1951) Genetic tumors in Nicotiana. Am Nat 99:73–79

    Google Scholar 

  • Kehr AE, Smith HH (1952) Multiple genome relationships in Nicotiana. Cornell Univ Agric Exp Sta Memoir 311

    Google Scholar 

  • Kennedy BS, Nielsen MT (1993) Characterization of tomato spotted wilt virus (TSWV) resistance in the tobacco cultivar ‘Polalta’ (Abstr.). Phytopathology 83(12):1420

    Google Scholar 

  • Kenward KD, Bai D, Ban MR, Brandle JE (1999) Isolation and characterization of Tnd-1, a retrotransposon marker linked to black root rot resistance in tobacco. Theor Appl Genet 98:387–395

    CAS  Google Scholar 

  • Kincaid RR (1949) Three interspecific hybrids of tobacco. Phytopathol 39:284–287

    Google Scholar 

  • Kitamura S, Tanaka A, Inoue M (2005) Genomic relationships among Nicotiana species with different ploidy levels revealed by 5S rDNA spacer sequences and FISH/GISH. Genes Genet Syst 80:251–260

    CAS  PubMed  Google Scholar 

  • Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new section classification in Nicotiana (Solanaceae) Taxon 52:73–82

    Google Scholar 

  • Knapp S. 2013. Nat.Hist. Museum NaturePLus. Seeking nightshades in South America. (blog) www.nhm.ac.uk

  • Kobus I (1978) Wstępne badania wartości hodowlanej męskosterylnych mutantów Nicotiana tabacum uzyskanych w wyniku działania promieni gamma Biul. Inst Hod Rośl 134:249–259

    Google Scholar 

  • Kobus I (1971) Investigations in the polyploids of Nicotiana tabacum L. and their hybrids with wild tobacco species. Genet Pol 12:323–328

    Google Scholar 

  • Kofer W, Glimelius K, Bonnet HT (1990) Modifications of floral development in tobacco induced by fusion of protoplasts of different male-sterile cultivars. Theor Appl Genet 79:97–102

    CAS  PubMed  Google Scholar 

  • Kofer W, Glimelius K, Bonnett HT (1991) Restoration of normal stamen development and pollen formation by fusion of different cytoplasmic male-sterile cultivars of Nicotiana tabacum. Theor Appl Genet 81:390–396

    CAS  PubMed  Google Scholar 

  • Korbecka-Glinka G, Czubacka A, Przybys M, Doroszewska T (2017) Resistance vs. tolerance to Potato virus Y in tobacco—comparing effectiveness using virus isolates from Central Europe. Breed Sci 67(5):459–465

    Google Scholar 

  • Kostoff D (1930) Tumours and other malformations on certain Nicotiana hybrids. Zbl Bakt II Abt 81:244–260

    CAS  Google Scholar 

  • Kostoff D (1943) Cytogenetics of the genus Nicotiana. State Printing House, Sofia

    Google Scholar 

  • Krusteva D, Dimitrov B, Nikova V (2003) Nicotiana gossei Domin as a source of aphid resistance in Nicotiana tabacum. Tiutun (Tobacco) 53:217–220

    Google Scholar 

  • Kubo T (1979) Effect of alien cytoplasms on agronomic characters in flue-cured tobacco. Bull Iwata Tob Exp Stn 11:83–90

    Google Scholar 

  • Kubo T (1981) Agronomic characteristics of male sterile flue-cured tobacco hybrids with the cytoplasm from Nicotiana suaveolens. Bull Iwata Tob Exp Stn 13:61–71

    Google Scholar 

  • Kubo T (1985) Studies on hybrid breeding by means of cytoplasmic male sterility in tobacco. Bull Iwata Tob Exp Stn 17:69–138

    Google Scholar 

  • Kubo T, Kumashiro T, Saito Y (1988) Cytoplasmic male sterile lines of a tobacco variety, Tsukuba 1, developed by asymmetric protoplast fusion. Jpn J Breed 38:153–164

    Google Scholar 

  • Kuboyama T, Chung CS, Takeda G (1994) The diversity of interspecific pollen-pistil incongruity in Nicotiana. Sex Plant Reprod 7:250–258

    Google Scholar 

  • Kumashiro T, Asahi T, Komari T (1988) A new source of cytoplasmic male sterile tobacco obtained by fusion between N. tabacum and X-irradiated N. africana protoplasts. Plant Sci 55:247–254 (CORESTA Inf Bul 1989:79)

    Google Scholar 

  • Kumashiro T, Asahi T, Nakakido F (1989) Transfer of cytoplasmic factors by asymmetric fusion from a cross-incompatible species, N. repanda to N. tabacum and characterization of cytoplasmic genomes. Plant Sci 1:137–144

    Google Scholar 

  • Kumashiro T, Kubo T (1986) Cytoplasm transfer of N. debneyi to N. tabacum by protoplast fusion. Jpn J Breed 36:39–48

    Google Scholar 

  • Kumashiro T, Oinuma T (1985) Comparison of genetic variability among anther derived and ovule derived doubled haploid lines of tobacco. Jpn J Breed 35:301–310

    Google Scholar 

  • Larkina NI (1980) Overcoming incompatibility between Nicotiana species by means of in vitro pollination. Plant Breed Abstr 50:690 (8067)

    Google Scholar 

  • Larkina NI (1983) Development of starting material for tobacco improvement by using interspecific hybridisation Coздaниe пyтeм мeжвидoвoй гибpидизaции нoвoгo иcxoднoгo мaтepиaлa для ceлeкции тaбaкa DSc thesis. WITIM, Krasnodar

    Google Scholar 

  • Laskowska D, Doroszewska T, Depta A, Kursa K, Olszak-Przybys H, Czubacka A (2013) A survey of Nicotiana germplasm for resistance to Tomato Spotted Wilt Virus (TSWV) spotted wilt virus (TSWV). Euphytica 193:207–219

    CAS  Google Scholar 

  • Laskowska D, Berbeć A (2005) Cytology and fertility of viable hybrids of Nicotiana tabacum L. cv. TB-566 with N. alata Link et Otto. J Appl Genet 46:11–18

    PubMed  Google Scholar 

  • Laskowska D, Berbeć A (2007) The new alloplasmic Nicotiana tabacum L. line of with Nicotiana wuttkei Clarkson et Symon cytoplasm Nowa męskosterylna linia Nicotiana tabacum L. z cytoplazmą N. wuttkei Clarkson et Symon (in Polish). Biul IHAR 244:289–296

    Google Scholar 

  • Laskowska D, Berbeć A (2010) TSWV resistance in DH lines of tobacco (Nicotiana tabacum L.) obtained from a hybrid between Polalta and Wiślica. Plant Breed 129:731–733

    CAS  Google Scholar 

  • Laskowska D, Berbeć A, Van Laere K, Kirov I, Czubacka A, Trojak-Goluch A (2015) Cytology and fertility of amphidiploid hybrids between Nicotiana wuttkei Clarkson et Symon and N. tabacum L. Euphytica 206:597–608. https://doi.org/10.1007/s10681-015-1459-3

    Article  CAS  Google Scholar 

  • Laskowska D, Berbeć A (2012) Production and characterization of amphihaploid hybrids between Nicotiana wuttkei Clarkson et Symon and N. tabacum. Euphytica 183:75–82

    Google Scholar 

  • Lawson DM, Schaeffer S, Wernsman E, Nielsen MT (2002) A comparison of Nicotiana suaveolens and Nicotiana glauca cytoplasmic male sterility systems in flue-cured tobacco. CORESTA Congress, New Orleans, Agro-Phyto Groups, AP11

    Google Scholar 

  • Lea HW (1963) The transfer of resistance against blue mold (Peronospora tabacina Adam) from Nicotiana debneyi to cultivated tobacco. CORESTA Inf Bull (3):13–15

    Google Scholar 

  • Lee CB, Page LE, McClure BA, Holtsford TP (2008) Post-pollination hybridization barriers in Nicotiana section Alatae. Sex Plant Reprod 21:183–195

    Google Scholar 

  • Legg PD, Collins GB, Litton CC (1979) Effects of the N mosaic-resistance factor on agronomic and chemical traits in Burley tobacco. Crop Sci 19:455–457

    CAS  Google Scholar 

  • Legg PD, Litton CC, Collins GB (1982) Effects of Nicotiana longiflora Cav. resistance to race 0 Phytophthora parasitica var. Nicotianae on agronomic and chemical traits in burley tobacco. Crop Sci 22:35–38

    Google Scholar 

  • Legg PD, Litton CC, Collins GB (1981) Effects of N. debneyi black root rot resistance factor on agronomic and chemical traits of burley tobacco. Theor Appl Genet 60:365–368

    CAS  PubMed  Google Scholar 

  • Legg PD, Smeeton BW (1999) II. Breeding and Genetics. (in) Layten Davis and MT Nielsen ed. Tobacco: production, chemistry and technology. Oxford, UK, Blackwell Science Ltd

    Google Scholar 

  • Lehmann H (1936) On interspecific cross sterility in the genus Nicotiana. Plant Breed. Abst. 7 (1936), abst. 1023 (in German)

    Google Scholar 

  • Lewis RS (2002) Tissue culture and molecular marker-assisted introgression of PVY resistance from N. africana to N. tabacum. CORESTA Congress, New Orleans, Agro-Phyto Groups, AP28

    Google Scholar 

  • Lewis RS (2005) Transfer of resistance to Potato Virus Y (PVY) from Nicotiana africana to Nicotiana tabacum: possible influence of tissue culture on the rate of introgression. Theor Appl Genet 110:678–687

    CAS  PubMed  Google Scholar 

  • Lewis RS (2007) Evaluation of Nicotiana tabacum genotypes possessing Nicotiana africana-derived genetic tolerance to Potato Virus Y. Crop Sci 47:1975–1984

    Google Scholar 

  • Lewis RS (2011) Nicotiana. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, plantation and ornamental crops. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21201-7_10

  • Lewis RS, Linger LR, Wolff MF, Wernsman EA (2007a) The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. Theor Appl Genet 115(2):169–178

    CAS  PubMed  Google Scholar 

  • Lewis RS, Milla SR, Kernodle SP (2007b) Analysis of an introgressed Nicotiana tomentosa genomic region affecting leaf number and correlated traits in Nicotiana tabacum. Theor Appl Genet 114:841–854

    CAS  PubMed  Google Scholar 

  • Lewis RS, Nicholson JS (2007) Aspects of the evolution of Nicotiana tabacum L. and the status of the United States Nicotiana germplasm collection. Genet Resources Crop Evol 54:727–740

    Google Scholar 

  • Lewis RS, Rose C (2010) Agronomic performance of tobacco mosaic virus-resistant tobacco lines and hybrids possessing the resistance gene N introgressed on different chromosomes. Crop Sci 50:1339–1347

    CAS  Google Scholar 

  • Lewis RS, Wernsman EA (2001) Efforts to initiate construction of a disease resistance package on a designer chromosome in tobacco. Crop Sci 41:1420–1427

    CAS  Google Scholar 

  • Liao J, Dai J, Yang S, Zhou X, Ren L, Chen Z, He H, Chen S (2017) Interspecific cross-hybrids of Nicotiana tabacum L. cv. (gla.) S ‘K326’ with Nicotiana alata. Plant Breed 136:427–435. https://doi.org/10.1111/pbr.12474

    Article  CAS  Google Scholar 

  • Lim KY, Souckova-Skalicka K, Sarasan V, Clarkson JJ, Chase MW, Kovarik A, Leitch AR (2006) A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the Kostoff synthetic tobacco. Am J Bot 93(6):875–883

    Google Scholar 

  • Ling H-Y, Edwards AM, Gantier MP, DeBoer K, Neale AD, Hamil JD, Walmsley AM (2012) An interspecific Nicotiana hybrid as a useful and cost-effective platform for production of animal vaccines. PLoS ONE 7(4):e35688. https://doi.org/10.1371/journal.pone.0035688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez M, Espino E, Garcia H (2008) Informe de nuevas variedades ‘Capero-1’: primer híbrido androestéril comercial de tabaco negro cubano (Nicotiana tabacum L.). Cultivos Trop 29:51

    Google Scholar 

  • Mackenzie J, Smeeton BW, Jack AM, Ternouth RAF (1986) Review on breeding for resistance to root knot, Meloidogyne javanica in flue-cured tobacco in Zimbabwe. Bul Spec CORESTA Symposium Taormina: 64, abstr P05

    Google Scholar 

  • Maktari ATA (1991) Use of cytoplasmic male sterility in the production of hybrid seed in tobacco Иcпoльзoвaниe цитoплaзмaтичecкoй мyжcкoй cтepильнocти в пpoизвoдcтвe гибpидныx ceмян тaбaкa (in Russian). Doctoral thesis. Kubanskij Gosudarstwiennyj Agrarnyj Institut

    Google Scholar 

  • Malecka J (1977) Cyto-embryological studies in Nicotiana hybrids. Acta Biol Cracov Bot 20:89–101

    Google Scholar 

  • Malinowski E (1916) O wystepowaniu nowych Form w potomstwie mieszańcow Nicotiana atropurpurea × Nicotiana silvestris. Comptes Rendues de la Societe des Sciences de Varsovie 9:827–864

    Google Scholar 

  • Mallach GS (1943) Inheritance in Nicotiana tabacum. XVI. Structural differences among the chromosomes of a selected group of varieties. Genetics 28:525–532

    Google Scholar 

  • Malloch WS, Malloch FW (1924) Species crosses in Nicotiana with special reference to N. longiflora × N. tabacum, N. longiflora × N. sanderae, N. tabacum × N. glauca. Genetics 9:261–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manabe, T, Marubashi W, Onozawa Y (1989) Temperature-dependent conditional lethality in interspecific hybrids between Nicotiana suaveolens Lehm and N. tabacum L. In: proceedings of the 6th International Congress of SABRAO, pp 459–462

    Google Scholar 

  • Manolov A (1980) Transfer of Peronospora resistance from Nicotiana exigua to Oriental Tobacco. Bulgarski Tiutun 25:11–18

    Google Scholar 

  • Marks CE (2010) Definition of South Pacific taxa of Nicotiana section Suaveolentes (Solanaceae). Muelleria 28:74–84

    Google Scholar 

  • Marks CE, Ladiges PY, Newbigin E (2011) Karyotypic variation in Nicotiana section Suaveolentes. Genet Resour Crop Ev 58:797–803

    Google Scholar 

  • Martinez-Croveto R (1978) Una nueve especie de Nicotiana de la flora argentina. Bonplandia 5:7–10

    Google Scholar 

  • Marubashi W, Onosato K (2002) Q Chromosome controls the lethality of interspecific hybrids between Nicotiana tabacum and Nicotiana suaveolens. Breed Sci 52:137–142

    CAS  Google Scholar 

  • Matveeva TV, Lutova LA (2014) Horizontal gene transfer from Agrobacterium to plants. Front Plant Sci 5:article 326

    Google Scholar 

  • Medgyesy P, Fejes E, Maliga P (1985) Interspecific chloroplast recombination in a Nicotiana somatic hybrid. Proc Natl Acad Sci USA 82:6960–6964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merxmueller H, Buttler KP (1975) Nicotiana in der Afrikanischen Namib ein pflanzengeographisches und phytogenetisches Ratsel. Mitt. Bot. Munchen 12:91–104

    Google Scholar 

  • Milla SR, Levin JS, Lewis RS, Rufty RC (2005) RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D.B. Adam. in Tobacco. Crop Sci 45:2346–2354

    CAS  Google Scholar 

  • Moav R (1958) Inheritance in Nicotiana tabacum XXIX: relationship of residual-chromosome homology to interspecific gene transfer. Am Nat 92:267–278

    Google Scholar 

  • Moav R, Cameron DR (1960) Genetic instability in Nicotiana hybrids. I. The expression of instability in N. tabacum × N. plumbaginifolia. Am J Bot 47:87–93

    Google Scholar 

  • Moon H, Nicholson JS (2007) AFLP and SCAR markers linked to tomato spotted wilt virus resistance in tobacco. Crop Sci 47:1887–1894

    CAS  Google Scholar 

  • Mudzengerere ET (1994) Breeding for resistance to Meloidogyne javanica in Burley tobacco in Zimbabwe. Bull Spec CORESTA Congress Harare 114:P30

    Google Scholar 

  • Murfett J, Lee C, Page L, Yates A, Ippolito A, Holtsford, TP (2005) Phylogenetics of Nicotiana Section Alatae and description of N. rastroensis. University of Texas, Botany 2005 Annual Meeting, Systematics Section/ASPT, Abstr. 359, Austin, Texas

    Google Scholar 

  • Murthy TGK, Subbarao IV (2004) Some new interspecific hybrids in the genus Nicotiana - characterization and utilization. Tob Res 30:33–41

    Google Scholar 

  • Murthy TGK, Sredhaar U, Siva Raju K (2014) Research achievements. I. Tobacco cultivar development. Incorporation of aphid resistance from N. gossei. N. repanda, N × . umbratica-nesophila and N × benthamianarepanda. CTRI Annual Report 2013–2014, Rajamundry, India, pp 17–20

    Google Scholar 

  • Näf U (1958) Studies on tumour formation in Nicotiana hybrids I. The classification of parents into two etiologically significant groups. Growth 22:167–180

    PubMed  Google Scholar 

  • Nagao T (1979) Somatic hybridization by fusion of protoplasts. II. Combinations of Nicotiana tabacum with N. glutinosa and of N. tabacum with N. alata. Jpn J Crop Sci 48:385–392

    Google Scholar 

  • Naumenko SA (2012) Particular qualities of the development of flue-cured and burley tobacco varieties in Russia Ocoбeннocти ceлeкции copтoв тaбaкa copтoтипoв Bиpджиния и Бepлeй в Poccии. Particular qualities of the development of flue-cured and Burley tobacco in Russia (in Russian). DSc thesis, Russian Timiryazev State Agrarian University, Moscow

    Google Scholar 

  • Nielsen MT, Collins GB (1989) Variation among androgenic and gynogenic doubled haploids of tobacco (Nicotiana tabacum). Euphytica 43:263–267

    Google Scholar 

  • Nielsen MT, Legg PD, Litton CC (1985) Effects of two introgressed disease resistance factors on agronomic characteristics and certain chemical components in burley tobacco. Crop Sci 25:698–701

    CAS  Google Scholar 

  • Nikova V (1984) Cytoplasmic male sterility in Nicotiana with cytoplasm from Nicotiana benthamiana Domin. Compt Rend Acad Sci Bulg 37:1253–1256

    Google Scholar 

  • Nikova V, Iancheva AM, Vladova R,Pandeva R, Petkova A (2006) Genetic improvement of Nicotiana tabacum by applying remote hybridization and biotechnological methods. CORESTA Congress, Paris, Agro-Phyto Groups, APOST 07

    Google Scholar 

  • Nikova V, Iantcheva AM, Pandeva R, Petkova A (2004) Investigation of alloplasmic tobacco lines by certain economically indices. CORESTA Congress, Kyoto, Agro-Phyto Groups, PPOST9

    Google Scholar 

  • Nikova V, Pundeva R, Vladova R, Petkova A (2001) A new tobacco cytoplasmic male sterile source from the hybrid combination Nicotiana longiflora Gav. and N. tabacum L. using in vitro techniques. Isr J Plant Sci 49:9–13

    Google Scholar 

  • Nikova V, Vladova R (2002) Wild Nicotiana species as a source of cytoplasmic male sterility in Nicotiana tabacum. Beiträge Zur Tab Int 20:301–311

    Google Scholar 

  • Nikova V, Vladova R, Pundeva R, Petkova A, Vladovska A (1998b) Study of Nicotiana ingulba Black and its crossability with N. tabacum L. Bull Spec. CORESTA Congress Brighton:150, PPOST 12 (b)

    Google Scholar 

  • Nikova V, Vladova R, Pundeva R, Shabanov D (1997) Cytoplasmic male sterility in Nicotiana tabacum L. obtained through interspecific hybridization. Euphytica 94:375–378

    Google Scholar 

  • Nikova VM (1986) Nicotiana excelsior Black as a source of cytoplasmic male sterility in Nicotiana tabacum L. Compt Rend Acad Bulg Sci 39:105–107

    Google Scholar 

  • Nikova VM, Shabanov D (1992) Development of male sterile tobacco forms by crossing Nicotiana knightiana × N. tabacum. CORESTA Inf Bul Special Congress Jerez de La Frontera:132

    Google Scholar 

  • Nikova VM, Shabanov DS (1988) Nicotiana amplexicaulis Burbidge as a source of cytoplasm male sterility in tobacco (Nicotiana tabacum L.). Compt Rend Acad Bulg Sci 41(3):83–86

    Google Scholar 

  • Nikova VM, Zagorska NA (1990) Overcoming hybrid incompatibility between Nicotiana africana Merxm and Nicotiana tabacum and development of cytoplasmically male sterile tobacco forms. Plant Cell, Tissue Organ Cult 32:71–75

    Google Scholar 

  • Nikova VM, Zagorska NA, Pundeva RS (1991) Development of four tobacco male sterile sources using in vitro techniques. Plant Cell, Tissue Organ Cult 27:289–295

    Google Scholar 

  • Nikova V, Pundeva R, Petkova A (1999) Nicotiana tabacum L. as a source of cytoplasmic male sterility in interspecific cross with N. alata Link & Otto. Euphytica 107:9–12

    Google Scholar 

  • Niwa M (1969) Radiation induced interspecific transfer of ws(pbg) gene from Nicotiana plumbaginifolia to N. tabacum: II. Estimation of frequency of the gene transfer induced by irradiation at the gametogenetic stage. Jap Breed 19:84–88

    Google Scholar 

  • Ohashi Y (1976) Nicotiana kawakamii: a new species of the genus Nicotiana. Bul Spec CORESTA, Congress Tokyo: 71 (abstr) P001

    Google Scholar 

  • Ohashi Y (1985) Breeding studies of wild species related to tobacco, with special reference to disease resistance. Bull Iwata Tob Exp Stn 17:1–62

    Google Scholar 

  • Oka H (1961) A breeding study on interspecic transfer of disease resistance in tobacco. Hatano Tobacco Expt, St. Bull, p 49

    Google Scholar 

  • Oupadissakoon S, Wernsman EA (1977) Agronomic performance and nature of gene effects in Progenitor Species‐derived Genotypes of Tobacco. Crop Sci 17(6):843–847

    Google Scholar 

  • Pal BP, Nath P (1936) A note on the sterile hybrid between N. tabacum and N. plumbaginifolia. Indian J Agric Sci 6:828–832

    Google Scholar 

  • Palakarcheva M (1981) Genetic peculiarities of tobacco breeding for disease resistance (in Bulgarian). Genetika Selektsiya 14:277–284

    Google Scholar 

  • Palakarcheva M (1984) Interspecific hybridization in the genus Nicotiana. Bul Spec CORESTA Congress Vienne: 142 PP31

    Google Scholar 

  • Palakarcheva M, Bailov D (1976) Disease resistant hybrids and varieties of tobacco obtained from interspecific hybridization. Rasteniev. Nauki 13:35–42 (Review of Plant Pathology 56: 3705)

    Google Scholar 

  • Palakarcheva M, Edreva A, Cholakova N, Noveva S (1978) Morphological, cytological, and biochemical studies of the amphidiploid Nicotiana goodspeedii W. × Nicotiana tabacum L. (2n = 88). Z Pflanzenzuechtg 80:49–63

    CAS  Google Scholar 

  • Palakarcheva MT, Edreva AM, Cholakova NI (1980) Study of the backcrossing effect of Nicotiana tabacum in hybrids obtained with the amphidiploids N. tabacum L. × N. debneyi D. (2n = 96) and N. goodspeedii × N. tabacum L. (2n = 88). Bul Spec CORESTA Congress Manila:102

    Google Scholar 

  • Palakarcheva M, Krusteva D (1978) Study on the inheritance of powdery mildew (Erysiphe cichoracearum D.C.) resistance in intercultivar tobacco hybrids. Genet Sel 11:126–134

    Google Scholar 

  • Pandey KK, Phung M (1982) ‘‘Hertwig effect’’ in plants: induced parthenogenesis through the use of irradiated pollen. Theor Appl Genet 62:295–300

    CAS  PubMed  Google Scholar 

  • Pandeya RS, White FH (1984) Delgold: A new flue-cured tobacco. Can J Plant Sci 64:233–236

    CAS  Google Scholar 

  • Pandeya RS, Douglas GC, Keller WA, Setterfield G, Patrick ZA (1986) Somatic hybridization between Nicotiana rustica and N. tabacum: Development of tobacco breeding strains with disease resistance and elevated nicotine content. Z Pflanzerzüchtg 96:346–352

    Google Scholar 

  • Patel KA, Gerstel DU (1961) Additional information on the mechanism of chromosome substitution in Nicotiana. Tob Sci 5:18–20

    Google Scholar 

  • Patrascu M, Paunescu D, Ciuperca A (1999) Transfer of the resistance to TSWV from Nicotiana alata to some tobacco cultivars, using the in vitro culture technique. CORESTA Meet Agro-Phyto Groups Suzhou, China, POST8

    Google Scholar 

  • Pereg LL (2013) Black root rot of cotton in Australia: the host, the pathogen and disease management. Crop Pasture Sci 64(12):1112

    Google Scholar 

  • Pirrie A, Power JB (1986) The production of fertile, triploid somatic hybrid plants (Nicotiana glutinosa (n) + N. tabacum (2 N) via gametic: somatic protoplast fusion. Theor Appl Genet 72:48–52

    CAS  PubMed  Google Scholar 

  • Pittarelli GW, Stavely JR (1975) Direct hybridization of Nicotiana repanda × N. tabacum. J Hered 66:281–284

    Google Scholar 

  • Qin Q, Li Y, Martinez N, Miller R, Ding N, Wu X, Li D, Yang S (2016) Development of user-friendly markers for disease resistance to black root rot through genotyping by sequencing. TSRC, Tob Sci Res Conf 70, Abstr. 42

    Google Scholar 

  • Ramavarma KT, Appa Rao K, Narayanan AI (1978) Male sterile flower amomalies in an interspecific Nicotiana hybrid. Tobacco Research 4:29–33

    Google Scholar 

  • Ramavarma KT, Apparao K, Narayanan AI, Sitaramaiah S, Joshi BG (1991) Evolving tobacco varieties resistant to the leaf-eating caterpillar Spodoptera litura F. through interspecific hybridization. Tobacco Research 17:29–32

    Google Scholar 

  • Ramavarma KT, Apparao K, Sitharamaiah S, Narayanan AI (1980) Interspecific transfer of resistance to tobacco caterpillar (Spodoptera litura F.) from Nicotiana benthamiana to Nicotiana tabacum. Cytologia 45:103–111

    Google Scholar 

  • Rao KA, Ramavarma KT, Joshi BG (1980) Interspecific hybridization and breeding for pest resistance in tobacco. Tob Sci 24:46–48

    Google Scholar 

  • Rao PN, Stokes GW (1963) Role of chromosome H in the development of calcium deficiency symptoms in burley tobacco. Crop Sci 3:261–264

    Google Scholar 

  • Reed S, Collins GB (1978) Interspecific hybrids in Nicotiana through in vitro culture of fertilized ovules. J Hered 69:311–315

    Google Scholar 

  • Reed SM, Burns JA (1986) Cross-restoration between Nicotiana cytoplasmic male-sterile and restored lines. J Hered 77(3):159–163

    Google Scholar 

  • Renny Byfield S, Chester M, Kovarik A et al (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854

    CAS  PubMed  Google Scholar 

  • Rice JH, Mundell RE, Millwood RJ, Chambers OD, Stewart CN, Davies HM (2013) Assessing the bioconfinement potential of a Nicotiana hybrid platform for use in plant molecular farming applications. BMC Biotechnol 13(1):63

    Google Scholar 

  • Rufty RC (1989) Genetics of host resistance to tobacco blue mold. (in) Blue mold of tobacco. APS Press, USA:141–164

    Google Scholar 

  • Rybin VA (1929) Uber einen allotetraploiden Bastard von Nicotiana tabacum × Nicotiana sylvestris. Ber Deut Bot Ges 37:385–394

    Google Scholar 

  • Sachs-Skalińska M (1917) Przyczynek do cytologii bezpłodnego mieszańca Nicotiana atropurpurea × Nicotiana silvestris = Beitrag zur Cytologie des sterilen Bastardes Nicotiana atropurpurea × Nicotiana silvestris. Comptes Rendus de la Société des Sciences de Varsovie 10

    Google Scholar 

  • Sarychev YF (1986) A new method of inducing diploid apomixis in Nicotiana tabacum L. Genetika 22:1142

    Google Scholar 

  • Shabanov D, Popchristev W, Tomov N (1974) Interspecific hybrid Nicotiana tabacum × N. setchellii (in Bulgarian). Nauch Trud 4:12–22

    Google Scholar 

  • Schweppenhauser MA (1975a) A source of Nicotiana tabacum resistance to Meloidogyne javanica. Tob Sci 19:43–46

    Google Scholar 

  • Schweppenhauser MA (1975b) Rootknot resistance from Nicotiana longiflora. Tob Sci 19:26–29

    Google Scholar 

  • Schweppenhauser MA (1974) Interspecific bridge transfer in Nicotiana of resistance to Meloidogyne javanica. S Afr J Sci 70:312–314

    Google Scholar 

  • Schweppenhauser MA, Mann TJ (1968) Restoration of staminal fertility in Nicotiana by introgression. Can J Genet Cytol 10:401–411

    Google Scholar 

  • Sheen SJ (1972) Isozyme evidence bearing on the origin of Nicotiana tabacum. Evolution 26:143–154

    CAS  PubMed  Google Scholar 

  • Skalicka K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic allotetraploid. New Phytol 166:291–303

    CAS  PubMed  Google Scholar 

  • Skucińska B, Miszke W, Kruczkowska H (1977) Studies on the use of interspecific hybrids in tobacco breeding. Obtaining of fertile hybrids by propagation in vitro. Acta Biol Cracov 20:81–88

    Google Scholar 

  • Slana LJ, Stavely JR, Grosso JJ, Golden AM (1977) Probable source of Meloidogyne incognita resistance in tobacco as indicated by reactions to five Meloidogyne isolates. Phytopathology 67:537–543

    Google Scholar 

  • Slusarkiewicz-Jarzina A, Zenkteler M (1983) Development of hybrid plants from ovules of Nicotiana tabacum pollinated in vitro with pollen grains of Nicotiana knightiana. Experimentia 39:1399–1400

    Google Scholar 

  • Smeeton BW, Ternouth RAF (1992) Sources of resistance to powdery mildew, wildfire, angular leaf spot, and Alternaria. CORESTA Info Bull 1992–1993:127–135

    Google Scholar 

  • Smith HH (1968) Recent cytogenetic studies in the genus Nicotiana. Adv Genet 14:1–43

    Google Scholar 

  • Smith LB, Downs R (1964) Solanaceas. Flora ilustrada Catarinense. 321. Phytologia 10:438

    Google Scholar 

  • Sproule A, Donaldson P, Dijak M, Bevis E, Pandeya R, Keller WA, Gleddie S (1991) Fertile somatic hybrids between transgenic Nicotiana tabacum and transgenic N. debneyi selected by dual antibiotic resistance. Theor Appl Genet 82:450–456

    CAS  PubMed  Google Scholar 

  • Stavely JR, Skoog HA (1976) Transfer of resistance to a virulent strain of Pseudomonas tabaci from Nicotiana rustica to Nicotiana tabacum breeding lines. Proc Am Phytopath Soc 3:231

    Google Scholar 

  • Stavely JR, Skoog HA (1978) Stabilization in Nicotiana tabacum of a dominant gene from N. rustica for resistance to a virulent strain of Pseudomonas tabaci. Phytopathol. News 12: 181

    Google Scholar 

  • Stavely JR, Pittarelli GW, Burk LG (1973) Nicotiana repanda as a potential source for disease resistance in N. tabacum. J Hered 64(5):265–271

    Google Scholar 

  • Stehmann JR, Semir J, Ippolito A (2002) Nicotiana mutabilis (Solanaceae), a new species from southern Brazil. Kew Bull 57:639–646

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stoyanova M (1972) Investigations of the hybrids between the species Nicotiana tabacum and N. glauca (in Bulgarian). Otdal Hybridiz Rast C BAN:127–136

    Google Scholar 

  • Subhashini U, Venkateswarlu T, Anjani K (1986) Embryo rescue in Nicotiana hybrids by in vitro culture. Plant Sci 43:219–222

    Google Scholar 

  • Swaminathan MS, Murthy BR (1957) One-way incompatibility in some species crosses in the genus Nicotiana. Indian Journal of Genetics and Plant Breeding 17:23–26

    Google Scholar 

  • Symon DE (1998) A new Nicotiana species from near Coober Pedy. South Australia. J. Adelaide Bot. Gard. 18:1–4

    Google Scholar 

  • Symon DE (1984) A new species of Nicotiana (Solanaceae) from Dalhousie Springs. South Australia J Adelaide Bot Gard. 7:117–121

    Google Scholar 

  • Symon DE, Kennealy KF (1994) A new species of Nicotiana (Solanaceae) from near Broome, Western Australia. Nuytsia 9:421–425

    Google Scholar 

  • Szilagyi L (1975) Elimination of chromosomes in an alloploid hybrid of Nicotiana tabacum × N. glauca. Acta Bot Acad Sci Hung 21:433–441

    Google Scholar 

  • Takenaka Y (1956) Cytogenetic studies in Nicotiana. XIV. Reduction divisions in five interspecific hybrids. Jpn J Genet 31:155–161

    Google Scholar 

  • Takenaka Y (1962) Cytogenetic studies in Nicotiana XVI: Reduction divisions in six interspecific hybrids between N. tabacum and other six species. Shokubutsugaku Zasshi 75(888): 237–241

    Google Scholar 

  • Takenaka Y (1963) Cytogenetic studies in Nicotiana. XV. Reduction divisions in three tnterspecific hybrids and one amphidiploid. Jpn J Genet 38:135–140

    Google Scholar 

  • Tanaka M (1961) The effect of irradiated pollen grains on species crosses of Nicotiana. Bulletin of the Hatano Experiment Station 51:1–38

    Google Scholar 

  • Tatemichi Y (edit) (2005) Illustrated Book of the Genus Nicotiana. Plant Breeding and Genetics Research Laboratory, Japan Tobacco Inc., Tokyo, Japan

    Google Scholar 

  • Ternouth RAP, MacKenzie J, Shepherd JA (1986) Introduction of Meloidogyne javanica resistance into flue-cured tobacco in Zimbabwe. CORESTA Inf Bull Symposium, Taormina, Italy

    Google Scholar 

  • Ternovsky MF (1934) Die Fragen der Immunitat bei Vertretern der Gattung Nicotiana. Der Zuchter 6:140–144

    Google Scholar 

  • Ternovsky MF (1941) Methods of breeding tobacco varieties resistant to tobacco mosaic and powdery mildew. Meтoдикa ceлeкции нeвocпpиимчивыx copтoв тaбaкa к тaбaчнoй мoзaикe и мyчниcтoй poce Sbornik issl-nauch rabot WITIM, Cб. paбoт пo ceлeк., гeнeт. и ceмeнoвoд, тaбaкa и мaxopки. BИTИM. Кpacнoдap, в. 66, c. 143–146

    Google Scholar 

  • Ternovsky MF, Butenko RG, Moiseeva ME (1972) The use of tissue culture to overcome the barrier of incompatibility between species and sterility of interspecific hybrids. Sov Genet 8:27–33

    Google Scholar 

  • Ternovsky MF, Larkina NI (1978) Hybridization of native tobacco cultivars with the wild species Nicotiana rosulata. Гибpидизaция oтeчecтвeнныx copтoв тaбaкa c диким видoм N.rosulata Sov Genet 14:1039–1045

    Google Scholar 

  • Ternovsky MF, Moiseyeva ME, Grebenkin A (1973) Experimentally produced new type of male sterility in interspecies Nicotiana hybrids (in Russian). Sov Genet 9:693–702

    Google Scholar 

  • Ternovsky MF, Shinkareva IK, Larkina NI (1976) Production of interspecific tobacco hybrids by the pollination of ovules in vitro. Sov Genet 12:1209–1213

    Google Scholar 

  • Tezuka T (2012) Hybrid Lethality in the Genus Nicotiana. Mworia JK, editor Botany. Rijeka InTech:191–210

    Google Scholar 

  • Tezuka T, Kuboyama T, Matsuda T, Marubashi W (2010) Seven of eight species in Nicotiana section Suaveolentes have common factors leading to hybrid lethality in crosses with Nicotiana tabacum. Ann Bot 106:267–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tezuka T, Marubashi W (2004) Apoptotic cell death observed during the expression of hybrid lethality in interspecific hybrids between Nicotiana tabacum and N. suaveolens. Breed Sci 54:59–66

    CAS  Google Scholar 

  • Trojak Goluch A, Laskowska D, Agacka M, Czarnecka D, Kawka M, Czubacka A (2011) Effectiveness of combining resistance to Thielaviopsis basicola and Tomato spotted wilt virus in haploid tobacco genotypes. Breed Sci 61:389–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trojak-Goluch A, Berbeć A (2009) Growth, development and chemical characteristics of tobacco lines carrying black root rot resistance derived from Nicotiana glauca (Grah.) Plant Breed 130:92–95. https://doi.org/10.1111/j.1439-0523.2009.01755.x

  • Trojak-Goluch A, Korbecka-Glinka G, Goepfert S, Doroszewska T, Berbec A (2016a) Tobacco breeding for TSWV resistance using RTSW-al factor derived from cultivar Polalta. CORESTA Congress, Berlin, 2016, Agronomy/Phytopathology Groups, APPOST 24

    Google Scholar 

  • Trojak-Goluch A, Laskowska D, Kursa K (2016b) Morphological and chemical characteristics of doubled haploids of flue-cured tobacco combining resistance to Thielaviopsis basicola and TSWV. Breed Sci 66:293–299

    PubMed  PubMed Central  Google Scholar 

  • Tsikov D, Nikova V (1980) Male sterility in tobacco (Nicotiana tabacum). IV. Seed productivity. Genet Plant Breed 13:198–205

    Google Scholar 

  • Tsikov D, Tsikova E (1986) Male sterility in tobacco. VI. Cytoplasm of N. gossei Mъcкa cтepилнocт пpи тютюнa (in Bulgarian). Genet Plant Breed 19:121–131 [CORESTA Inf Bul 1986(2):51–52]

    Google Scholar 

  • Tsikov D, Tsikova E, Nikova V (1977) Male sterility in tobacco. III. On anther feminization Mъcкa cтepилнocт пpи тютюнa. Зa фeминизaциaтa тичинкитe (in Bulgarian). Гeнeт и CeлGenet Plant Breed 10:129–140

    Google Scholar 

  • Valleau WD (1952) Breeding tobacco for disease resistance. Econ Bot 6:69–102

    Google Scholar 

  • Valleau WD, Stokes GW, Johnson E (1960) Nine years’ experience with the Nicotiana longiflora factor for resistance to Phytophthora parasitica var Nicotianae in the control of black shank. Tob Sci 4:92–94

    Google Scholar 

  • Venkateswarlu T, Nagarajan K, Subhashini U (1998) Root-knot nematode resistance through interspecific hybridization. Tob Symp 7:B20

    Google Scholar 

  • Verrier JL, Malpica A, L’Humeau J (2016) Breeding for blue-mould resistance in Burley and flue-cured tobacco: an overview of results. CORESTA Congress, AP, p 07

    Google Scholar 

  • Wan H, Ueng IN, Lin TT, Chen CH (1971) Interspecific transfer of frogeye resistance from N. repanda to N. tabacum. Taiwan Tob Wine Monop Bur Tob Res Annu Rep 34–35

    Google Scholar 

  • Wark DC (1963) Nicotiana species as sources of resistance to blue mold (Peronospora tabacina Adam) for cultivated tobacco. Proceedings of Third World Tobacco Scientific Congress Salisbury, Southern Rhodesia, Tobacco Research Board:252–259

    Google Scholar 

  • Wark DC (1970) Development of flue cured tobacco cultivars resistant to common strain of blue mold. Tob Sci 14:147–150

    Google Scholar 

  • Wark DC (1975) The development of blue mold resistant cultivars in Australia. CSIRO Div. of Plant Industry Annual Report 1975:31–33

    Google Scholar 

  • Warmke HE, Blakeslee AF (1939) Induction of tetraploidy in Nicotiana sanderae and in the sterile hybrid N. tabacum × N. glutinosa. Genetics 24:109–110

    Google Scholar 

  • Wernsman EA, Matzinger DF, Mann TJ (1976) Use of progenitor species germplasm for the Improvement of a cultivated allotetraploid. Crop Sci 16:800–803

    CAS  Google Scholar 

  • Wernsman EA, Rufty RC (1987) Tobacco. In: Fehr WW (ed) Principles of cultivar development, vol 2. Crop species. Macmillian, New York, pp 669–698

    Google Scholar 

  • White FH, Pandeya RS, Dirks VA (1979) Correlation studies among and between agronomic, chemical, physical and smoke characteristics in flue-cured tobacco (Nicotiana tabacum L.). Can J Plant Sci 59:111–120

    CAS  Google Scholar 

  • Whitham S, McCormick, S Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci 93:8776–8781

    Google Scholar 

  • Williams E (1975) Meiotic chromosome pairing in interspecific hybrids of Nicotiana. Comparative pairing of hybrids in section Suaveolentes. N Z J Bot 13:601–609

    Google Scholar 

  • Wong YN (1975) Genome analysis of tobacco interspecific hybrids. Taiwan Tob Wine Monop Bur Tob Res Inst Res Rep 2:22–31

    Google Scholar 

  • Woodend JJ, Mudzengerere E (1992) Inheritance of resistance to wildfire and angular leaf spot derived from Nicotiana rustica var. Brasilea Euphytica 64:149–156

    Google Scholar 

  • Wuttke HH (1969) Different levels of resistance in blue mold resistant tobacco. Austr J Agric Anim Husb 9:545–548

    Google Scholar 

  • Yang SJ (1960) Numerical chromosome instability in Nicotiana hybrids. I. Interplant variation among offspring of amphiploids. Genetics 50:745–756

    Google Scholar 

  • Zenkteler M, Melchers G (1978) In vitro hybridization by sexual methods and by fusion of somatic protoplasts: Experiments with Nicotiana tabacum × Petunia hybrida, N. tabacum × Hyoscyamus niger, H. niger × P. hybrida, Melandrium album × P. hybrida. Theor Appl Genet 52:81–90

    CAS  PubMed  Google Scholar 

  • Zhang S, Gao M, Zaitlin D (2012) Molecular linkage mapping and marker-trait associations with NlRPT, a downy mildew resistance gene in Nicotiana langsdorffii. Front Plant Sci 3:185. https://doi.org/10.3389/fpls.2012.00185

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zaitlin D (2008) Genetic Resistance to Peronospora tabacina in Nicotiana langsdorffii, a South American Wild Tobacco. Phytopathology 98:519–528

    CAS  PubMed  Google Scholar 

  • Zheng Y, Liu Z, Sun Y, Liu G, Yang A, Li F (2018) Characterization of genes specific to sua-CMS in Nicotiana tabacum. Plant Cell Rep 37(9):1245–1255

    Google Scholar 

  • Zhou X, Liu Y (2015) Hybridization by grafting: A new perspective? HortScience 50:520–521

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apoloniusz Berbeć .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berbeć, A., Doroszewska, T. (2020). The Use of Nicotiana Species in Tobacco Improvement. In: Ivanov, N.V., Sierro, N., Peitsch, M.C. (eds) The Tobacco Plant Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-29493-9_8

Download citation

Publish with us

Policies and ethics