Skip to main content

Conversion of Glycerol to Valuable Products

  • Chapter
  • First Online:
Book cover Horizons in Bioprocess Engineering

Abstract

Crude glycerol generated as by-product in transesterification and saponification process in biodiesel and soap industries. The wide application of crude glycerol was restricted by the presence of a copious amount of impurities such as water, methanol, soap, fatty acid, and ash. A simple way of utilizing the surplus amount of glycerol generated in biodiesel industries is to convert them in the valuable product either by fermentation, esterification , hydrogenolysis, dehydration, oxidation, and liquefaction. Utilizing crude glycerol as feedstock for the production of valuable products through biological conversion is more reliable and safer when compared to other methods. Apart from the conventional products like ethanol, citric acid, 1, 3, propanediol, crude glycerol can also use for the production of biosurfactants , pigments, mannitol, biohydrogen .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn, J. H., Sang, B. I., & Um, Y. (2011). Butanol production from thin stillage using Clostridium pasteurianum. Bioresource Technology, 102, 4934–4937.

    Article  CAS  PubMed  Google Scholar 

  • Akpan, U. G., Jimoh, A., & Mohammed, A. D. (1999). Extraction, characterization and modification of castor seed oil. Leonardo Journal of Sciences, 4, 1–8.

    Google Scholar 

  • Ardi, M. S., Aroua, M. K., & AwanisHashim, N. (2015). Progress, prospect and challenges in glycerol purification process: A review. Renewable and Sustainable Energy Reviews, 42, 1164–1173.

    Article  CAS  Google Scholar 

  • Ashby, R. D., Nunez, A., Solaiman, K. Y. D., & Foglia, A. T. (2005). Sophorolipid Biosynthesis from a Biodiesel Co-product Stream. Journal of the American Oil Chemists’ Society, 82, 625–630.

    Article  CAS  Google Scholar 

  • Asher, D. R., & Simpson, D. W. (1956). Glycerol purification by ion exclusion. Journal of Physical Chemistry, 60, 518–521.

    Article  CAS  Google Scholar 

  • Auta, H. S., Abidoye, K. T., Tahir, H., Ibrahim, A. D., & Aransiola, S. A. (2014). Citric acid production by Aspergillus niger cultivated on Parkiabiglobosa fruit pulp. International Scholarly Research Notices, 1–8.

    Google Scholar 

  • Ayoub, M., & Abdullah, A, Z., (2012). Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renewable and Sustainable Energy Reviews, 16, 2671–2686.

    Google Scholar 

  • Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53, 495–508.

    Article  CAS  PubMed  Google Scholar 

  • Biebl, H. (2001). Fermentation of glycerol by Clostridium pasteurianum batch and continuous culture studies. Journal of Industrial Microbiology and Biotechnology, 27, 18–26.

    Article  CAS  PubMed  Google Scholar 

  • Bohon, M. D., Metzger, B. A., Linak, W. P., King, C. J., & Roberts, W. L. (2011). Glycerol combustion and emissions. Proceedings of the Combustion Institute, 33, 2717–2724.

    Article  CAS  Google Scholar 

  • Brady, J. E., (1990). General chemistry principles and structure (5th ed.). New York: Wiley.

    Google Scholar 

  • Carnejo, A., Barrio, I., Compoy, M., Lazaro, J., & Navarrete, B. (2017). Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review. Renewable and Sustainable Energy Reviews, 79, 1400–1413.

    Article  Google Scholar 

  • Cesar, A. G, Quispe, Christian, J. A. Coronado., & Joao, A. Carvalho. Jr. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493.

    Google Scholar 

  • Cheimenen, L, I., & NwosuObieogu, K., (2016). Sub- products of agro based ndustries as valuable raw material for the production of PHA: A review. International Journal of Scientific research in Science, Engineering and Technology, 2, 680–693.

    Google Scholar 

  • Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chemical Society Reviews, 38, 2434–2446.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, L., Liu, L., & Ye, X. P. (2013). Acrolein production from crude glycerol in sub- and super-critical water. Journal of the American Oil Chemists’ Society, 90, 601–610.

    Article  CAS  Google Scholar 

  • Chi, Z., Liu, G. L., Liu, C. G., & Chi, Z. M. (2016). Poly (β-L-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Applied Microbiology and Biotechnology, 100, 3841–3851.

    Article  CAS  PubMed  Google Scholar 

  • Choi, W. J. (2008). Glycerol-based biorefinery for fuels and chemicals. Recent Patents on Biotechnology, 2, 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Chozhavendhan, S., Praveenkumar, R., Sivarathanakumar, S., Kirubalini, G., & Jayakumar, M. (2016a). Purification and characterization of waste stream glycerol derived from biodiesel industry. Journal of Environmental Biology, 37, 1529–1534.

    Google Scholar 

  • Chozhavendhan, S., Praveen Kumar, R., Bharathiraja, B., & Jayakumar, M. (2016b). Recent progress on transforming crude glycerol into high value chemicals: a critical review. Biofuels, 1–6.

    Google Scholar 

  • Chozhavendhan, S., Praveenkumar, R., Sivarathanakumar, S., Raja Sathendra, E., Bharathiraja, B., & Jayakumar, M. (2014). Comparative study on Candida sp for the production glycerol. Int J Chemtech Res, 6, 5058–5063.

    Google Scholar 

  • Clomburg, J. M., & Gonzalez, R. (2013). Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends in Biotechnology, 31, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Dhar, B. R., & Kirtania, K. (2010). Excess methanol recovery in biodiesel production process using a distillation column: a simulation study. ChemEng Res Bull, 13, 55–60.

    Google Scholar 

  • Dharmadi, Y., Murarka, A., & Gonzalez, R. (2006). Anaerobic Fermentation of Glycerol by Escherichia coli: A New Platform for Metabolic Engineering. Biotechnology and Bioengineering, 94, 821–829.

    Article  CAS  PubMed  Google Scholar 

  • Efeovbokhan, V. E., Anawe, P. A. L., Adeeyo, O., & Obafunso, B. A. (2012). Recovery of Glycerine from Spent Palm Kernel Soap and Palm Oil Soap Lye. International Journal of Engineering & Technology, 12, 11–16.

    Google Scholar 

  • Gallardo, R., Alves, M., & Rodrigues, L. R. (2014). Modulation of crude glycerol fermentation by Clostridium pasteurianum DSM 525 towards the production of butanol. Biomass and Bioenergy, 71, 134–143.

    Article  CAS  Google Scholar 

  • Gerpen, J. V. (2005). Biodiesel processing and production. Fuel Processing Technology, 86, 1097–1107.

    Article  CAS  Google Scholar 

  • Ghosh, D., Tourigny, A., & Hallenbeck, P. C. (2012). New stoichiometric reforming of biodiesel derived crude glycerol to hydrogen by photofermentation. International Journal of Hydrogen Energy, 37, 2273–2277.

    Article  CAS  Google Scholar 

  • Guerrero-Perez, M. O., Juana, M. R., Jorge, B., Jose, R. M., & Tomas, C. (2009). Recent inventions in glycerol transformations and processing. Recent Patents ChemEng, 2, 11–21.

    Article  CAS  Google Scholar 

  • Hasheminejad, M., Tabatabaei, M., Mansourpanah, Y., Far, M. K., & Javani, A. (2011). Upstream and downstream strategies to economize biodiesel production. BioresourTechnol, 102, 461–468.

    Article  CAS  Google Scholar 

  • Hunt, J. A. (1999). A Short history of soap. The Pharmaceutical journal, 263, 985–989.

    Google Scholar 

  • Israel, A. U., Obot, I. B., & Asuquo, J. E. (2008). Recovery of Glycerol from Spent Soap Lye by - Product of Soap Manufacture. E-Journal of Chemistry, 5, 940–945.

    Article  CAS  Google Scholar 

  • Iyyappan, J., Bharathiraja, B., Baskar, G., Jayamuthunagai, J., Barathkumar, S., & Anna shiny, R, (2018). Malic acid production by chemically induced Aspergillusniger MTCC 281 mutant from crude glycerol. Bioresource Technology, 251, 264–267.

    Google Scholar 

  • Johnson, D. T., & Taconi, K. A. (2007). The glyceringlut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environmental Progress, 26, 338–348.

    Article  CAS  Google Scholar 

  • Kale, S., Umbarkar, S. B., Dongare, M. K., Eckelt, R., Armbruster, U., & Martin, A. (2015). Selective formation of triacetin by glycerol acetylation using acidic ion exchange resins as catalyst and toluene as an entrainer. Appl. Catal. A: Gen., 490, 10–16.

    Article  CAS  Google Scholar 

  • Khan, A., Bhide, A., & Gadre, R. (2009). Mannitol production from glycerol by resting cells of Candida magnoliae. BioresourTechnol, 100, 4911–4923.

    Article  CAS  Google Scholar 

  • Khawaji, A. D., Kutubkhanah, I. K., & Wie, J. M. (2008). Advances in sea water desalination technologies. Desalination, 221, 47–69.

    Article  CAS  Google Scholar 

  • Konaka, A., Tago, T., Yoshikawa, T., Shitara, H., Nakasaka, Y., & Masuda, T. (2013). Conversion of biodiesel-derived crude glycerol into useful chemicals over a zirconia-iron oxide catalyst. Industrial and Engineering Chemistry Research, 52, 15509–15515.

    Article  CAS  Google Scholar 

  • Kong, P. S., Aroua, M. K., & Daud, W. M. A Wan, (2016). Conversion of crude and pure glycerol into derivatives: a feasibility evaluation. Renewable and Sustainable Energy Reviews, 63, 533–565.

    Google Scholar 

  • Kusidiyantini, E., Gaudin, P., Goma, G., & Blanc, P. J. (1998). Growth kinetics and astaxanthnin production of Phaffiarhodozymaon glycerol as acarbon source durin batch fementation. BiotechnolLett, 20, 929–934.

    Google Scholar 

  • Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87, 1083–1095.

    Article  CAS  Google Scholar 

  • Liu, Y., Koh, C. M. j., & Ji, L., (2011) Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresource Technology, 102, 3927–3933.

    Google Scholar 

  • Luo, X., Ge, X., Cui, S., & Li, Y., (2016a) Bioresource technology value-added processing of crude glycerol into chemicals and polymers. BioresourTechnol, 215, 144–154.

    Google Scholar 

  • Luo, X., Ge, X., Cui, S., & Li, Y., (2016b) Bioresource technology value-added processing of crude glycerol into chemicals and polymers. BioresourTechnol, 215, 144–154.

    Google Scholar 

  • Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1–15.

    Article  CAS  Google Scholar 

  • Malaviya, A., Jang, Y. S., & Lee, S. Y. (2012). Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. ApplMicrobiolBiotechnol, 93, 1485–1494.

    CAS  Google Scholar 

  • Manosak, R., Limpattayanate, S., & Hunsom, M. (2011). Sequential-refining of crude glycerol derived from waste used-oil methyl ester plant via a combined process of chemical and adsorption. Fuel Processing Technology, 92, 92–99.

    Article  CAS  Google Scholar 

  • Mantzouridou, F., Naziri, E., & Tsimidou, M. Z. (2008). Industrial Glycerol as a Supplementary Carbon Source in the Production of -Carotene by Blakeslea trispora. Journal of Agriculture and Food Chemistry, 56, 2668–2675.

    Article  CAS  Google Scholar 

  • Mattam, A. J., Clomburg, J. M., Gonzalez, R., & Yazdani, S. S. (2013). Fermentation of glycerol and production of valuable chemical and biofuel molecules. BiotechnolLett, 35, 831–842.

    CAS  Google Scholar 

  • McCoy, M. (2006). Agribusiness giant goes head-to-head against petroleum-based chemical companies. Chemical & Engineering News, 84, 16–27.

    Article  Google Scholar 

  • Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R, S., Batalha M. O., & César, A. S., (2018). Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 88, 109–122.

    Google Scholar 

  • Ngo, T. A., Kim, M. S., & Sim, S. J. (2011). High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. International Journal of Hydrogen Energy, 36, 5836–5842.

    Article  CAS  Google Scholar 

  • Oh, B., Seo, J., Heo, S., Hong, W., Luo, L., Joe, M., et al. (2011). Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. BioresourTechnol, 102, 3918–3922.

    Article  CAS  Google Scholar 

  • Parker, S. P. (1987). Glycerin: Encyclopedia of Science and Technology (6th ed., pp. 124–127). New York: Mc-Graw Hill Inc.

    Google Scholar 

  • Qureshi, N., & Blaschek, H. P. (2001). ABE production from Corn: A recent economic evaluation. Journal of Industrial Microbiology and Biotechnology, 27, 292–297.

    Article  CAS  PubMed  Google Scholar 

  • Razavi, S. H., Seyed, M. M., Hassan, M. Y., & Marc, I. (2007). Fatty acid and carotenoid production by Sporobolomycesruberrimus when using technical glycerol and ammonium sulfate. J MicrobiolBiotechnol, 17, 1591–1597.

    CAS  Google Scholar 

  • Saint-Amans, S., Girbal, L., Andrade, J., Ahrens, K., & Soucaille, P. (2001). Regulation of Carbon and Electron Flow in Clostridium butyricum VPI 3266 Grown on Glucose-Glycerol Mixtures. Journal of Bacteriology, 183, 1748–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samul, D., Leja, K., & Grajek, W. (2014). Impurities of crude glycerol and their effect on metabolite production. Annals of Microbiology, 4, 891–898.

    Article  CAS  Google Scholar 

  • Schievano, A., D Imporzano, G., & Adani, F., (2009). Substituting energy crops with organic wastes and agro-industrial residues for biogas production. Journal of Environmental Management, 90, 2537–2541.

    Google Scholar 

  • Singhabhandhu, A., & Tezuka, T. (2010). A perspective on incorporation of glycerin purification process in biodiesel plants using waste cooking oil as feedstock. Energy, 35, 2493–2504.

    Article  CAS  Google Scholar 

  • Sneha, K. A., Rafael, A. G., & Zhiyou, W. (2009). Use of biodiesel-derived crude glycerol for producing Eicosapentaenoic acid (EPA) by the fungus Pythiumir regular. Journal of Agriculture and Food Chemistry, 57, 2739–2744.

    Article  CAS  Google Scholar 

  • Stojkovic, I. J., Stamenkovic, O. S., Povrenovic, D. S., & Veljkovic, V. B. (2014). Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 32, 1–15.

    Article  CAS  Google Scholar 

  • Taconi, K. A., Venkataramanan, K. P., & Johnson, D. T. (2009). Growth and solvent production by Clostridium pasteurianum ATCC 6013 utilizing biodiesel-derived crude glycerol as the sole carbon source. Environ Prog Sustain Energy, 28, 100–110.

    Article  CAS  Google Scholar 

  • Tao, J. L., Wang, X. D., Shen, Y. L., & Wei, D. Z. (2005). Strategy for the improvement of prodigiosin production by a Serratia marcescens mutant through fed-batch fermentation. World J MicrobiolBiotechnol, 21, 969–972.

    Article  CAS  Google Scholar 

  • Tewari, K. S., Mehrotra, S. N., & Vishnoi, N. K. (1980). A Textbook of organic Chemistry (p. 469). New Delhi: Vikas.

    Google Scholar 

  • West, T. P. (2015). Fungal biotransformation of crude glycerol into malic acid. Zeitschrift für Naturforschung, 70, 165–167.

    Article  CAS  PubMed  Google Scholar 

  • Willke, T., & Vorlop, K. (2008). Biotransformation of glycerol into 1, 3-propanediol. European Journal of Lipid Science and Technology, 110, 831–840.

    Article  CAS  Google Scholar 

  • Zambanini, T., Sarikaya, E., Kleineberg, W., Buescher, J. M., Meurer, G., Wierckx, N., et al. (2016). Efficient malic acid production from glycerol with Ustilagotrichophora TZ1. Biotechnology for Biofuels, 67, 1–9.

    Google Scholar 

  • Zambanini, T., Tehrani, H. H., Geiser, E., Sonntag, K. C., Buescher, M. J., Meurer, G., et al. (2017). Metabolic engineering of Ustilago TZ1 for improved malic acid production. Metabolic Engineering Communications, 4, 12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhanyou, C., Denver, P., Zhiyou, W., Craig, F., & Shulin, C. (2007). A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 42, 1537–1545.

    Article  CAS  Google Scholar 

  • Zhu, C., Chiu, S., Nakas, P., & Nomura, C. T. (2013). Bioplastics from waste glycerol derived from biodiesel industry. Journal of Applied Polymer Science, 130, 1–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chozhavendhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chozhavendhan, S., Karthiga Devi, G., Jayamuthunagai, J., Bharathiraja, B., Praveen kumar, R., Raman, J.K. (2019). Conversion of Glycerol to Valuable Products. In: Pogaku, R. (eds) Horizons in Bioprocess Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-29069-6_8

Download citation

Publish with us

Policies and ethics