Skip to main content

Probabilistic Boundary Coverage for Unknown Target Fields with Large Perception Uncertainty and Limited Sensing Range

  • Conference paper
  • First Online:
Book cover Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

  • 2545 Accesses

Abstract

We introduce a new type of probabilistic boundary coverage problem where a robot has to enclose unknown target fields (UTFs) with large perception uncertainty and limited sensing range. When the robot gets closer to UTF and accumulates sufficient sensory readings, it employs Gaussian processes (GPs) as a local belief function to approximate field boundary distribution in an ellipse-shaped local region. The local belief function allows us to predict UTF boundary trends and establish an adjacent ellipse for further exploration. The process is governed by a depth-first search process until UTF is approximately enclosed by connected ellipses when the boundary coverage process ends. We formally prove that our boundary coverage process guarantees the enclosure above a given coverage ratio with a preset probability threshold. We have implemented our algorithm and tested it under different field types in simulation.

This work was supported in part by National Science Foundation under IIS-1318638, NRI-1426752, NRI-1526200, and NRI-1748161.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, E.U., Choset, H., Lee, J.Y.: Sensor-based coverage with extended range detectors. IEEE Trans. Robot. 22(1), 189–198 (2006)

    Article  Google Scholar 

  2. Bekris, K., Shome, R., Krontiris, A., Dobson, A.: Reducing roadmap size for network transmission in support of cloud automation. IEEE Robot. Autom. Mag. (2016)

    Google Scholar 

  3. Bryan, B., Nichol, R.C., Genovese, C.R., Schneider, J., Miller, C.J., Wasserman, L.: Active learning for identifying function threshold boundaries. In: Advances in Neural Information Processing Systems, pp. 163–170 (2006)

    Google Scholar 

  4. Chen, J., Low, K.H., Yao, Y., Jaillet, P.: Gaussian process decentralized data fusion and active sensing for spatiotemporal traffic modeling and prediction in mobility-on-demand systems. IEEE Trans. Autom. Sci. Eng. 12(3), 901–921 (2015)

    Article  Google Scholar 

  5. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Robots 31(4), 299 (2011)

    Article  Google Scholar 

  6. Fink, J., Hsieh, M.A., Kumar, V.: Multi-robot manipulation via caging in environments with obstacles. In: IEEE International Conference on Robotics and Automation, pp. 1471–1476 (2008)

    Google Scholar 

  7. Ivan, V., Vijayakumar, S.: Space-time area coverage control for robot motion synthesis. In: International Conference on Advanced Robotics (ICAR), pp. 207–212. IEEE (2015)

    Google Scholar 

  8. Jadaliha, M., Xu, Y., Choi, J., Johnson, N., Li, W.: Gaussian process regression for sensor networks under localization uncertainty. IEEE Trans. Signal Process. 61(2), 223–237 (2013). https://doi.org/10.1109/TSP.2012.2223695

    Article  MathSciNet  MATH  Google Scholar 

  9. Jing, W., Newman, W.: Improving robotic assembly performance through autonomous exploration. IEEE International Conference on Robotics and Automation, p. 3303 (2002)

    Google Scholar 

  10. Kim, C.Y., Song, D., Xu, Y., Yi, J., Wu, X.: Cooperative search of multiple unknown transient radio sources using multiple paired mobile robots. IEEE Trans. Robot. 30(5), 1161–1173 (2014)

    Article  Google Scholar 

  11. Kim, C.Y., Song, D., Yi, J., Wu, X.: Decentralized searching of multiple unknown and transient radio sources with paired robots. Engineering 1(1), 058–065 (2015)

    Article  Google Scholar 

  12. Low, K.H., Chen, J., Dolan, J.M., Chien, S., Thompson, D.R.: Decentralized active robotic exploration and mapping for probabilistic field classification in environmental sensing. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems-Volume 1, International Foundation for Autonomous Agents and Multiagent Systems, pp. 105–112 (2012)

    Google Scholar 

  13. Maeda, Y., Kodera, N., Egawa, T.: Caging-based grasping by a robot hand with rigid and soft parts. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5150–5155 (2012)

    Google Scholar 

  14. Mannadiar, R., Rekleitis, I.: Optimal coverage of a known arbitrary environment. In: IEEE International Conference on Robotics and Automation, pp. 5525–5530 (2010)

    Google Scholar 

  15. Marchant, R., Ramos, F.: Bayesian optimisation for intelligent environmental monitoring. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2242–2249 (2012)

    Google Scholar 

  16. Miller, L.M., Silverman, Y., MacIver, M.A., Murphey, T.D.: Ergodic exploration of distributed information. IEEE Trans. Robot. 32(1), 36–52 (2016)

    Article  Google Scholar 

  17. Paull, L., Saeedi, S., Seto, M., Li, H.: Sensor-driven online coverage planning for autonomous underwater vehicles. IEEE/ASME Trans. Mechatron. 18(6), 1827–1838 (2013)

    Article  Google Scholar 

  18. Pereira, G.A., Campos, M.F., Kumar, V.: Decentralized algorithms for multi-robot manipulation via caging. Int. J. Robot. Res. 23(7–8), 783–795 (2004)

    Article  Google Scholar 

  19. Pipattanasomporn, P., Makapunyo, T., Sudsang, A.: Multifinger caging using dispersion constraints. IEEE Trans. Robot. 32(4), 1033–1041 (2016)

    Article  Google Scholar 

  20. Plonski, P.A., Vander Hook, J., Isler, V.: Environment and solar map construction for solar-powered mobile systems. IEEE Trans. Robot. 32(1), 70–82 (2016)

    Article  Google Scholar 

  21. Rasmussen, C.E.: Gaussian Processes for Machine Learning. The MIT Press (2006)

    Google Scholar 

  22. Rodner, E., Freytag, A., Bodesheim, P., Denzler, J.: Large-scale Gaussian process classification with flexible adaptive histogram kernels. In: European Conference on Computer Vision, pp. 85–98. Springer (2012)

    Google Scholar 

  23. Rodriguez, A., Mason, M.T., Ferry, S.: From caging to grasping. Int. J. Robot. Res. 31(7), 886–900 (2012)

    Article  Google Scholar 

  24. Shnaps, I., Rimon, E.: Online coverage by a tethered autonomous mobile robot in planar unknown environments. IEEE Trans. Robot. 30(4), 966–974 (2014)

    Article  Google Scholar 

  25. Song, D., Kim, C.Y., Yi, J.: On the time to search for an intermittent signal source under a limited sensing range. IEEE Trans. Robot. 27(2), 313–323 (2011)

    Article  Google Scholar 

  26. Song, D., Kim, C.Y., Yi, J.: Simultaneous localization of multiple unknown and transient radio sources using a mobile robot. IEEE Trans. Robot. 28(3), 668–680 (2012). https://doi.org/10.1109/TRO.2012.2183069

    Article  Google Scholar 

  27. Vasudevan, S., Ramos, F., Nettleton, E., Durrant-Whyte, H.: Gaussian process modeling of large-scale terrain. J. Field Robot. 26(10), 812–840 (2009). https://doi.org/10.1002/rob.20309

    Article  MATH  Google Scholar 

  28. Vongmasa, P., Sudsang, A.: Coverage diameters of polygons. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4036–4041. IEEE (2006)

    Google Scholar 

  29. Wan, W., Fukui, R.: Efficient planar caging test using space mapping. IEEE Trans. Autom. Sci. Eng. (2016)

    Google Scholar 

  30. Xu, L., Stentz, A.: An efficient algorithm for environmental coverage with multiple robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4950–4955 (2011)

    Google Scholar 

  31. Yang, K., Keat Gan, S., Sukkarieh, S.: A gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV. Adv. Robot. 27(6), 431–443 (2013). https://doi.org/10.1080/01691864.2013.756386

    Article  Google Scholar 

  32. Sk, Yun, Rus, D.: Distributed coverage with mobile robots on a graph: locational optimization and equal-mass partitioning. Robotica 32(02), 257–277 (2014)

    Article  Google Scholar 

  33. Zarubin, D., Pokorny, F.T., Toussaint, M., Kragic, D.: Caging complex objects with geodesic balls. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2999–3006. IEEE (2013)

    Google Scholar 

Download references

Acknowledgements

Thanks for C. Chou, H. Cheng, S. Yeh, A. Kingery, A. Angert, H. Li, and T. Sun for their inputs and Y. Sun, M. Jin, D. Wang, and Y. Yu for their contributions to the NetBot Laboratory, Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhen Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, B., Song, D. (2020). Probabilistic Boundary Coverage for Unknown Target Fields with Large Perception Uncertainty and Limited Sensing Range. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_50

Download citation

Publish with us

Policies and ethics