Skip to main content

Physiological Response to Heat Stress

  • Chapter
  • First Online:
Book cover Exertional Heat Illness

Abstract

The human body is equipped with physiological systems that aid in heat dissipation during heat stress. These systems work to limit heat storage during heat stress to maintain a relatively constant internal body temperature. Thermal stress such as passive heat stress, exercise, or exercise in the heat exacerbates thermal strain and must be managed through various thermoeffector responses. This chapter provides a fundamental understanding of the body’s physiological responses to heat stress and biophysical factors that promote or interfere with heat loss. Our aim is to first examine environmental and exercise conditions that optimize heat loss and address biophysical determinants that result in metabolic heat production and heat dissipation. We also present neurological control of heat stress and ways in which neural control of physiological systems enhance heat loss. Finally, we address heat acclimatization and behavioral thermoregulation as methods to further enhance heat loss during heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lind AR. Human tolerance to hot climates. Compr Physiol. 2011, Suppl. 26: Handbook of physiology, reactions to environmental agents: 93–109. First published in print 1977. https://doi.org/10.1002/cphy.cp090106.

  2. Lind AR. A physiological criterion for setting thermal environmental limits for everyday work. J Appl Physiol. 1963;18:51–6.

    Article  CAS  Google Scholar 

  3. Cheung SS, McLellan TM, Tenaglia S. The thermophysiology of uncompensable heat stress. Physiological manipulations and individual characteristics. Sports Med. 2000;29(5):329–59.

    Article  CAS  Google Scholar 

  4. Armstrong LE, Johnson EC, Casa DJ, Ganio MS, McDermott BP, Yamamoto LM, et al. The American football uniform: uncompensable heat stress and hyperthermic exhaustion. J Athl Train. 2010;45(2):117–27.

    Article  Google Scholar 

  5. Wingo JE, Crandall CG, Kenny GP. Human heat physiology. In: Casa DJ, editor. Sport and physical activity in the heat: maximizing performance and safety. Cham: Springer; 2018. p. 15–30.

    Chapter  Google Scholar 

  6. Gagge AP, Gonzalez RR. Mechanisms of heat exchange: biophysics and physiology. Compr Physiol. 2011, Suppl. 14: Handbook of physiology, environmental physiology: 45–84. First published in print 1996. https://doi.org/10.1002/cphy.cp040104.

  7. Whipp BJ, Wasserman K. Efficiency of muscular work. J Appl Physiol. 1969;26(5):644–8.

    Article  CAS  Google Scholar 

  8. Cramer MN, Jay O. Partitional calorimetry. J Appl Physiol (1985). 2019;126(2):267–77.

    Article  CAS  Google Scholar 

  9. Parsons K. Human thermal environments: the effects of hot, moderate and cold environments on human health, comfort and performance. 3rd ed. Boca Raton: CRC Press; 2014.

    Book  Google Scholar 

  10. Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432(7015):345–52.

    Article  CAS  Google Scholar 

  11. Cramer MN, Jay O. Biophysical aspects of human thermoregulation during heat stress. Auton Neurosci. 2016;196:3–13.

    Article  Google Scholar 

  12. Ross M, Abbiss C, Laursen P, Martin D, Burke L. Precooling methods and their effects on athletic performance. Sports Med. 2013;43(3):207–25.

    Article  Google Scholar 

  13. Gagge AP, Nishi Y. Heat exchange between human skin surface and thermal environment. Compr Physiol. 2011, Suppl. 26: Handbook of physiology, reactions to environmental agents: 69–92. First published in print 1977. https://doi.org/10.1002/cphy.cp090105.

  14. Pryor JL, Pryor RR, Grundstein A, Casa DJ. The heat strain of various athletic surfaces: a comparison between observed and modeled wet-bulb globe temperatures. J Athl Train. 2017;52(11):1056–64.

    Article  Google Scholar 

  15. Muza SR, Banderet LE, Cadarette BS. Protective uniforms for nuclear, biological, and chemical warfare: metabolic, thermal, respiratory, and psychological issues. In: Pandoff KB, Re B, editors. Medical aspects of harsh environments. Washington, DC: Office of the Surgeon General, United States Army; 2002. p. 1095–138. https://ke.army.mil/bordeninstitute/published_volumes/harshEnv2/HE2ch36.pdf. Accessed 21 Mar 2019.

    Google Scholar 

  16. Wenger CB. Heat of evaporation of sweat: thermodynamic considerations. J Appl Physiol. 1972;32(4):456–9.

    Article  CAS  Google Scholar 

  17. Gagnon D, Jay O, Kenny GP. The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. J Physiol. 2013;591(11):2925–35.

    Article  CAS  Google Scholar 

  18. Candas V, Libert JP, Vogt JJ. Human skin wettedness and evaporative efficiency of sweating. J Appl Physiol Respir Environ Exerc Physiol. 1979;46(3):522–8.

    CAS  PubMed  Google Scholar 

  19. Ravanelli N, Coombs GB, Imbeault P, Jay O. Maximum skin wettedness after aerobic training with and without heat acclimation. Med Sci Sports Exerc. 2018;50(2):299–307.

    Article  Google Scholar 

  20. Passmore R, Durnin JVGA. Human energy expenditure. Physiol Rev. 1955;35(4):801–40.

    Article  CAS  Google Scholar 

  21. Jay O, Cramer MN. A new approach for comparing thermoregulatory responses of subjects with different body sizes. Temperature (Austin). 2015;2(1):42–3.

    Article  Google Scholar 

  22. Adams JD, Ganio MS, Burchfield JM, Matthews AC, Werner RN, Chokbengboun AJ, et al. Effects of obesity on body temperature in otherwise-healthy females when controlling hydration and heat production during exercise in the heat. Eur J Appl Physiol. 2015;115(1):167–76.

    Article  CAS  Google Scholar 

  23. McLellan TM, Daanen HA, Cheung SS. Encapsulated environment. Compr Physiol. 2013;3(3):1363–91.

    PubMed  Google Scholar 

  24. Pascoe DD, Bellingar TA, McCluskey BS. Clothing and exercise. II. Influence of clothing during exercise/work in environmental extremes. Sports Med. 1994;18(2):94–108.

    Article  CAS  Google Scholar 

  25. Filingeri D. Neurophysiology of skin thermal sensations. Compr Physiol. 2016;6(3):1429–91. https://doi.org/10.1002/cphy.c150040.

    Article  PubMed  Google Scholar 

  26. Schlader ZJ, Stannard SR, Mündel T. Human thermoregulatory behavior during rest and exercise – a prospective review. Physiol Behav. 2010;99(3):269–75.

    Article  CAS  Google Scholar 

  27. Kingma BR, Frijns AJ, Schellen L, van Marken Lichtenbelt WD. Beyond the classic thermoneutral zone: including thermal comfort. Temperature (Austin). 2014;1(2):142–9.

    Article  Google Scholar 

  28. Morrison SF, Nakamura K. Central mechanisms for thermoregulation. Annu Rev Physiol. 2019;81(1):285–308.

    Article  CAS  Google Scholar 

  29. Abbott SBG, Saper CB. Role of the median preoptic nucleus in the autonomic response to heat-exposure. Temperature (Austin). 2018;5(1):4–6.

    Article  Google Scholar 

  30. Shibasaki M, Crandall CG. Mechanisms and controllers of eccrine sweating in humans. Front Biosci (Schol Ed). 2010;2(1):685–96.

    Google Scholar 

  31. Low PA. Evaluation of sudomotor function. Clin Neurophysiol. 2004;115(7):1506–13.

    Article  Google Scholar 

  32. Kenefick RW, Cheuvront SN. Physiological adjustments to hypohydration: impact on thermoregulation. Auton Neurosci. 2016;196:47–51.

    Article  Google Scholar 

  33. Gonzalez-Alonso J, Crandall CG, Johnson JM. The cardiovascular challenge of exercising in the heat. J Physiol. 2008;586(1):45–53.

    Article  CAS  Google Scholar 

  34. Coyle EF, Gonzalez-Alonso J. Cardiovascular drift during prolonged exercise: new perspectives. Exerc Sport Sci Rev. 2001;29(2):88–92.

    CAS  PubMed  Google Scholar 

  35. Walloe L. Arterio-venous anastomoses in the human skin and their role in temperature control. Temperature (Austin). 2016;3(1):92–103.

    Article  Google Scholar 

  36. James CA, Richardson AJ, Watt PW, Willmott AG, Gibson OR, Maxwell NS. Short-term heat acclimation improves the determinants of endurance performance and 5-km running performance in the heat. Appl Physiol Nutr Metab. 2017;42(3):285–94.

    Article  CAS  Google Scholar 

  37. Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(Suppl 1):20–38.

    Article  Google Scholar 

  38. Flouris AD. Functional architecture of behavioural thermoregulation. Eur J Appl Physiol. 2011;111(1):1–8.

    Article  Google Scholar 

  39. Flouris AD. Human thermoregulation. In: Périard J, Racinais S, editors. Heat stress in sport and exercise: thermophysiology of health and performance. Cham: Springer; 2019. p. 3–28.

    Chapter  Google Scholar 

  40. Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):52–64.

    Article  Google Scholar 

  41. Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. 2011;1225:72–82.

    Article  Google Scholar 

  42. Schlader ZJ, Stannard SR, Mündel T. Evidence for thermoregulatory behavior during self-paced exercise in the heat. J Therm Biol. 2011;36(7):390–6.

    Article  Google Scholar 

  43. Rav-Acha M, Hadad E, Epstein Y, Heled Y, Moran DS. Fatal exertional heat stroke: a case series. Am J Med Sci. 2004;328(2):84–7.

    Article  Google Scholar 

  44. Belval LN, Armstrong LE. Comparative physiology of thermoregulation. In: Casa D, editor. Sport and physical activity in the heat. Cham: Springer; 2018. p. 3–14.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke N. Belval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belval, L.N., Morrissey, M.C. (2020). Physiological Response to Heat Stress. In: Adams, W., Jardine, J. (eds) Exertional Heat Illness. Springer, Cham. https://doi.org/10.1007/978-3-030-27805-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27805-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27804-5

  • Online ISBN: 978-3-030-27805-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics