Skip to main content

A Review of Quasi-perfect Secondary Structure Prediction Servers

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2019)

Abstract

The secondary structure was first described by Pauling et al. in 1951 [14] in their findings of helical and sheet hydrogen bounding patterns in a protein backbone. Further refinements have been made since then, such as the description and identification of first 3, then 8 local conformational states [10]. The accuracy of 3-state secondary structure prediction has risen during last 3 decades and now we are approaching to the theoretical limit of 88–90%. These improvements came from increasingly larger databases of protein sequences and structures for training, the use of template secondary structure information and more powerful deep learning techniques. In this paper we review the best four scorer servers which provide the highest accuracy for 3- and 8-state secondary structure prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altschul, S., et al.: Gapped blast and PSI-blast: a new generation of protein databases search programs. Nucleic Acids Res. 25, 3389–402 (1997). https://doi.org/10.1093/nar/25.17.3389

    Article  Google Scholar 

  2. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181(4096), 223–230 (1973)

    Article  Google Scholar 

  3. Bourne, P.E.: The protein data bank. In: Protein Structure: Determination, Analysis, and Applications for Drug Discovery, p. 389 (2003)

    Google Scholar 

  4. Ceroni, A., Frasconi, P.: On the role of long-range dependencies in learning protein secondary structure. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), vol. 3, pp. 1899–1904. IEEE (2004)

    Google Scholar 

  5. Ceroni, A., Frasconi, P., Pollastri, G.: Learning protein secondary structure from sequential and relational data. Neural Netw. 18(8), 1029–1039 (2005)

    Article  Google Scholar 

  6. Fang, C., Shang, Y., Xu, D.: MUFOLD-SS: new deep inception-inside-inception networks for protein secondary structure prediction. Proteins: Struct. Funct. Bioinform. 86(5), 592–598 (2018)

    Article  Google Scholar 

  7. Hanson, J., Paliwal, K., Litfin, T., Yang, Y., Zhou, Y.: Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks. Bioinformatics (2018)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983)

    Article  Google Scholar 

  11. Klausen, M.S., et al.: NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins Struct. Funct. Bioinform. 87, 520–527 (2019)

    Article  Google Scholar 

  12. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T., Tramontano, A.: Critical assessment of methods of protein structure prediction (CASP) - round XII. Proteins: Struct. Funct. Bioinform. 86(Suppl. 1) (2017). https://doi.org/10.1002/prot.25415

    Article  Google Scholar 

  13. Oldfield, C.J., Chen, K., Kurgan, L.: Computational prediction of secondary and supersecondary structures from protein sequences. In: Kister, A. (ed.) Protein Supersecondary Structures, pp. 73–100. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-9161-7_4

    Chapter  Google Scholar 

  14. Pauling, L., Corey, R.B., Branson, H.R.: The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. 37(4), 205–211 (1951). https://doi.org/10.1073/pnas.37.4.205. https://www.pnas.org/content/37/4/205

    Article  Google Scholar 

  15. Pirovano, W., Heringa, J.: Protein secondary structure prediction. In: Carugo, O., Eisenhaber, F. (eds.) Data Mining Techniques for the Life Sciences, pp. 327–348. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-60327-241-4_19

    Chapter  Google Scholar 

  16. Remmert, M., Biegert, A., Hauser, A., Söding, J.: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9(2), 173 (2012)

    Article  Google Scholar 

  17. Rost, B.: Protein secondary structure prediction continues to rise. J. Struct. Biol. 134(2–3), 204–218 (2001)

    Article  Google Scholar 

  18. Rost, B., Sander, C.: Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc. Nat. Acad. Sci. 90(16), 7558–7562 (1993)

    Article  Google Scholar 

  19. Rost, B., Sander, C., Schneider, R.: Redefining the goal of protein secondary structure prediction. J. Mol. Biol. 235, 13–26 (1994). https://doi.org/10.1016/S0022-2836(05)80007-5

    Article  Google Scholar 

  20. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Sig. Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  21. Staples, M., Chan, L., Si, D., Johnson, K., Whyte, C., Cao, R.: Artificial intelligence for bioinformatics: applications in protein folding prediction (2019). https://doi.org/10.1101/561027

  22. Stephenson, N., et al.: Survey of machine learning techniques in drug discovery. Curr. Drug Metab. 19 (2018). https://doi.org/10.2174/1389200219666180820112457

    Article  Google Scholar 

  23. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  24. Tai, C.H., Bai, H., Taylor, T.J., Lee, B.: Assessment of template-free modeling in CASP10 and ROLL. Proteins Struct. Funct. Bioinform. 82, 57–83 (2014)

    Article  Google Scholar 

  25. Torrisi, M., Kaleel, M., Pollastri, G.: Porter 5: fast, state-of-the-art AB initio prediction of protein secondary structure in 3 and 8 classes. bioRxiv, p. 289033 (2018)

    Google Scholar 

  26. Yang, Y., et al.: Sixty-five years of the long march in protein secondary structure prediction: the final stretch? Brief. Bioinform. 19(3), 482–494 (2016)

    Google Scholar 

  27. Zhang, W., Dunker, A.K., Zhou, Y.: Assessing secondary structure assignment of protein structures by using pairwise sequence-alignment benchmarks. Proteins: Struct. Funct. Bioinform. 71(1), 61–67 (2008). https://doi.org/10.1002/prot.21654. https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.21654

    Article  Google Scholar 

  28. Zhou, Y., Duan, Y., Yang, Y., Faraggi, E., Lei, H.: Trends in template/fragment-free protein structure prediction. Theor. Chem. Acc. 128(1), 3–16 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirto Musci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musci, M., Maruccia, G., Ferretti, M. (2019). A Review of Quasi-perfect Secondary Structure Prediction Servers. In: Anderst-Kotsis, G., et al. Database and Expert Systems Applications. DEXA 2019. Communications in Computer and Information Science, vol 1062. Springer, Cham. https://doi.org/10.1007/978-3-030-27684-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27684-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27683-6

  • Online ISBN: 978-3-030-27684-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics