Skip to main content

Conflict Avoidance Within Max-Plus Fault-Tolerant Control: Application to a Seat Assembly System

  • Chapter
  • First Online:
Book cover Modelling and Performance Analysis of Cyclic Systems

Abstract

Flexibility and agility are central requirements for future manufacturing systems (especially assembly systems), because in most industries the product variety and the fluctuations in demand are still increasing. An increase of the degree of flexibility allows more efficient activities aiming at following the dynamically evolving markets. Such systems should be able to react to changes of product, demands, increased varieties of products requirements concerning reduced delivery times and increased product quality. Therefore, a strong focus on the flexibility of manufacturing and assembly systems leads to economic advantages for industrial companies in terms of the system investment cost. In particular, the cost related to the reconfiguration of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rossiter, J.A.: Model-Based Predictive Control: A Practical Approach. CRC Press, Bocca Raton (2013)

    Google Scholar 

  2. Prodan, I., Olaru, S., Stoica, C., Niculescu, S.-I.: Predictive control for trajectory tracking and decentralized navigation of multi-agent formations. Int. J. Appl. Math. Comput. Sci. 23(1), 91–102 (2013)

    Article  MathSciNet  Google Scholar 

  3. Gruzlikov, A.M., Kolesov, N.V.: Discrete-event diagnostic model for a distributed computational system. Merging chains. Autom. Remote Control 78(4), 682–688 (2017)

    Article  MathSciNet  Google Scholar 

  4. Polak, M., Majdzik, P., Banaszak, Z., Robert Wójcik, R.: The performance evaluation tool for automated prototyping of concurrent cyclic processes. Fundam. Inf. 60(1), 269–289 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Abrams, M., Doraswamy, N., Chitra, A.M.: Visual analysis of parallel and distributed programs in the time, event, and frequency domains. IEEE Trans. Parallel Distrib. Syst. 3(6), 672–685 (1992)

    Article  Google Scholar 

  6. Seybold, L., Witczak, M., Majdzik, P., Stetter, R.: Towards robust predictive fault-tolerant control for a battery assembly system. Int. J. Appl. Math. Comput. Sci. 25(4), 849–862 (2015)

    Article  Google Scholar 

  7. De Schutter, B., Van Den Boom, T.: Model predictive control for max-plus-linear discrete event systems. Automatica 37(7), 1049–1056 (2001)

    Article  Google Scholar 

  8. Park, S.J., Lim, J.T.: Robust and nonblocking supervisor for discreteevent systems with model uncertainty under partial observation. IEEE Trans. Autom. Control 45(9), 2393–2396 (2000)

    Article  Google Scholar 

  9. Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-linear Systems. Springer International Publishing, Berlin (2014)

    Book  Google Scholar 

  10. Stetter, R., Simundsson, A.: Design for control. In: Proceedings of the 21st International Conference on Engineering Design, Vancouver, Canada, 21–25 Aug 2017, pp. 149–158. The Design Society (2017)

    Google Scholar 

  11. Seybold, L., Pieczyński, A., Paczynski, A, Stetter R.: Concept of an advanced monitoring, planning, control and diagnosis system for autonomous vehicles. In: Simani, S., Bonfé, M., Castaldi, P., Mimmo, N. (eds.) Proceedings of the 8th Workshop on Advanced Control and Diagnosis, ACD’2010, Ferrara, Italy, 18–19 Nov 2010, pp. 107–112 (2010)

    Google Scholar 

  12. Glaessgen, E., Stargel, D.: The digital twin paradigm for future NASA and US Air Force vehicles. In: 53rd AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, 23–26 April 2012

    Google Scholar 

  13. Tao, F,; Zhang, M.: Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5, 20418–20427 (2017)

    Article  Google Scholar 

  14. Uhlemann, H.J., Lehmann, C., Steinheipler, R.: The digital twin: realizing the cyber-physical production system for industry 4.0. Proc. CIRP 61, 335–340 (2017)

    Article  Google Scholar 

  15. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, Fangyuan, H.S.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol.D 94, 3563–3576 (2018)

    Article  Google Scholar 

  16. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, New York (1994)

    Google Scholar 

  17. Butkovic, P.: Max-Linear Systems: Theory and Algorithms. Springer, Berlin (2010)

    Google Scholar 

  18. Martin, H.: Transport und Lagerlogistik: Systematik, Planung, Einsatz und Wirtschaftlichkeit. Springer, Berlin (2016)

    Book  Google Scholar 

  19. Stetter, R., Bertsch, S., Eckart, P. Paczynski, A.: Torque steering system for electrical and hybrid power trains. In: Proceedings of 13th EAEC European Automotive Congress, Valencia, Spain, 13–16 June 2011 (2011)

    Google Scholar 

  20. Baruwa, O.T., Piera, M.A., Guasch, A.: Deadlock-Free Scheduling Method for flexible manufacturing systems based on timed colored petri nets and anytime heuristic search IEEE transactions on systems. Man, Cybern. Syst. 5(45), 1–12 (2015)

    Google Scholar 

  21. An, Y., Wu, N., Chen, P.: Short-term scheduling of vehicle testing system using object petri net. IEEE Access 6, 61317–61330 (2018)

    Article  Google Scholar 

  22. Ribeiro, G., Saldanha, R., Maia, C.: Analysis of decision stochastic discrete-event systems aggregating max-plus algebra and markov chain journal of control. Autom. Electr. Syst. 29(5), 576–585 (2018)

    Article  Google Scholar 

  23. Majdzik, P., Akieleszak-Witczak, A., Seybold, L., Stetter, R., Mrugalska, B.: A fault-tolerant approach to the control of a battery assembly system. Control Eng. Pract. 55, 139–148 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Centre, Poland under Grant: UMO-2017/27/B/ST7/00620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Witczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Witczak, M., Majdzik, P., Lipiec, B., Stetter, R. (2020). Conflict Avoidance Within Max-Plus Fault-Tolerant Control: Application to a Seat Assembly System. In: Bożejko, W., Bocewicz, G. (eds) Modelling and Performance Analysis of Cyclic Systems. Studies in Systems, Decision and Control, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-030-27652-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27652-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27651-5

  • Online ISBN: 978-3-030-27652-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics