Skip to main content

Reinforcement Learning in Order to Control Biomechanical Models

  • Conference paper
  • First Online:
Book cover Progress in Industrial Mathematics at ECMI 2018

Part of the book series: Mathematics in Industry ((TECMI,volume 30))

  • 815 Accesses

Abstract

These days, techniques belonging to the research field of Artificial Intelligence (AI) are widely applied and used. Researchers increasingly understand the possibilities and advantages of those techniques for new types of tasks as well as for solving problems which are studied for years and solved by well known solution techniques so far. We focus on Reinforcement Learning (RL) [14] in the context of optimal control problems. We point out the similarities and differences between RL and classical optimal control systems and stress advantages of RL applied to biomechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

    Google Scholar 

  2. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: Openai gym. CoRR (2016). abs/1606.01540

    Google Scholar 

  3. Coady, P.: Ai gym workout (2017). https://learningai.io/projects/2017/07/28/ai-gym-workout.html. Cited 26 Oct 2018

  4. Deisenroth, M., Rasmussen, C.: PILCO: a model-based and data-efficient approach to policy search. In: Proceedings of the 28th International Conference on Machine Learning, ICML, pp. 465–472 (2011)

    Google Scholar 

  5. Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter Textbook. De Gruyter, Berlin (2011)

    MATH  Google Scholar 

  6. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B Biol. Sci. 126(843), 136–195 (1938)

    Article  Google Scholar 

  7. Kidzinski, L., Mohanty, S.P., Ong, C.F., Hicks, J.L., Carroll, S.F., Levine, S., Salath, M., Delp, S.L.: Learning to Run Challenge: Synthesizing Physiologically Accurate Motion Using Deep Reinforcement Learning. CoRR (2018). abs/1804.00198

    Google Scholar 

  8. Kullback, S.: Information Theory and Statistics. Wiley, New York (1959)

    MATH  Google Scholar 

  9. Kullback, S., Leibler, R.A.: On Information and Sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  10. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. Wiley, New York (1994)

    Book  Google Scholar 

  11. Schulman, J., Levine, S., Abbeel, P., Jordan, M.I., Moritz, P.: Trust Region Policy Optimization. In: ICML. Lille, France, pp. 1889–1897 (2015)

    Google Scholar 

  12. Schulman, J., Moritz, P., Levine, S., Jordan, M.I., Abbeel, P.: High-Dimensional Continuous Control Using Generalized Advantage Estimation. CoRR (2015). abs/1506.02438

    Google Scholar 

  13. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy Optimization Algorithms. CoRR (2017). abs/1707.06347

    Google Scholar 

  14. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  15. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)

    MATH  Google Scholar 

  16. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning 8(3), 229–256 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the funding by the Federal Ministry of Education and Research of Germany (BMBF), project number 05M16UKD.

Fig. 3
figure 3

Activations of the Hill’s muscle models

Fig. 4
figure 4

State of one trajectory executed after the training

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Gottschalk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gottschalk, S., Burger, M. (2019). Reinforcement Learning in Order to Control Biomechanical Models. In: Faragó, I., Izsák, F., Simon, P. (eds) Progress in Industrial Mathematics at ECMI 2018. Mathematics in Industry(), vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-27550-1_66

Download citation

Publish with us

Policies and ethics