Skip to main content

A New Concept of UAV Recovering System

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11742))

Abstract

This paper introduces a new concept of recovering UAVs to their carrier using manipulator, aiming to better use the carrier’s carrying capability. The state-of-the-art of recycling UAVs are stated in the first place, the advantages and the setbacks of the current available recycling systems are introduced, and the reason for the setbacks are further analyzed before this new concept is introduced. To accomplish the basic recovering task, a minimum system configuration that can explain the idea is introduced and the model of the system is built based on several important assumptions. To further explain how the system works, a simulation based on the above configuration is given. The simulation result indicates that the system can fulfill the task of recovering the UAV, and the result also verified the efficiency of the new system, which implies its potential usefulness in the future application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Daly, J.M., Yan, M., Waslander, S.L.: Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays. Auton. Robots 38(2), 179–191 (2015)

    Article  Google Scholar 

  2. Botao, H., Lu, L., Mishra, S.: Fast, safe and precise landing of a quadrotor on an oscillating platform. In: 2015 American Control Conference (ACC), pp. 3836–3841 (2015)

    Google Scholar 

  3. Tang, Z., et al.: Homing on a moving dock for a quadrotor vehicle. In: 2015 IEEE Region 10 Conference, TENCON 2015, pp. 1–6 (2015)

    Google Scholar 

  4. Zheng, D., Wang, H., Chen, W.: Image-based visual tracking of a moving target for a quadrotor. In: 2017 11th Asian Control Conference (ASCC), pp. 198–203 (2017)

    Google Scholar 

  5. Kim, J., et al.: Outdoor autonomous landing on a moving platform for quadrotors using an omnidirectional camera. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1243–1252 (2014)

    Google Scholar 

  6. Vlantis, P., et al.: Quadrotor landing on an inclined platform of a moving ground vehicle. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2202–2207 (2015)

    Google Scholar 

  7. Benini, A., Rutherford, M.J., Valavanis, K.P.: Experimental evaluation of a real-time GPU-based pose estimation system for autonomous landing of rotary wings UAVs. Control Theory Technol. 16(2), 145–159 (2018)

    Article  MathSciNet  Google Scholar 

  8. Jung, Y., Cho, S., Shim, D.H.: A trajectory-tracking controller design using L1 adaptive control for multi-rotor UAVs. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 132–138 (2015)

    Google Scholar 

  9. Chen, X., et al.: System integration of a vision-guided UAV for autonomous landing on moving platform. In: IEEE International Conference on Control and Automation, pp. 761–766 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (No. U1813216 and No. 61803221), the Science and Technology Research Foundation of Shenzhen (JCYJ20160301100921349 and JCYJ20170817152701660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houde Liu .

Editor information

Editors and Affiliations

Appendices

Appendix 1

$$ \left( {\begin{array}{*{20}c} {\dot{x}_{1} } \\ {\dot{x}_{2} } \\ {\dot{x}_{3} } \\ {\dot{x}_{4} } \\ {\dot{x}_{5} } \\ {\dot{x}_{6} } \\ {\dot{x}_{7} } \\ {\dot{x}_{8} } \\ {\dot{x}_{9} } \\ {\dot{x}_{10} } \\ {\dot{x}_{11} } \\ {\dot{x}_{12} } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {x_{4} + x_{5} \sin x_{1} \tan x_{2} + x_{6} \cos x_{1} \tan x_{2} } \\ {x_{5} \cos x_{1} - x_{6} \sin x_{1} } \\ {\left( {x_{5} \sin x_{1} + x_{6} \cos x_{1} } \right)/\cos x_{2} } \\ {\left( {\left( {I_{yy} - I_{zz} } \right)x_{5} x_{6} - x_{5}\Omega Jr} \right)/I_{xx} } \\ {\left( {\left( {I_{zz} - I_{xx} } \right)x_{4} x_{6} + x_{4}\Omega Jr} \right)/I_{yy} } \\ {\left( {\left( {I_{xx} - I_{yy} } \right)x_{4} x_{5} - {\dot{\Omega }}Jr} \right)/I_{zz} } \\ {x_{10} } \\ {x_{11} } \\ {x_{12} } \\ 0 \\ 0 \\ g \\ \end{array} } \right) + \left( {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & {1/I_{xx} } & 0 & 0 \\ 0 & 0 & {1/I_{yy} } & 0 \\ 0 & 0 & 0 & {1/I_{zz} } \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ {\frac{{\cos x_{1} \sin x_{2} \cos x_{3} + \sin x_{1} \sin x_{3} }}{m}} & 0 & 0 & 0 \\ {\frac{{\cos x_{1} \sin x_{2} \sin x_{3} - \sin x_{1} \cos x_{3} }}{m}} & 0 & 0 & 0 \\ { - \frac{{\cos x_{1} \cos x_{2} }}{m}} & 0 & 0 & 0 \\ \end{array} } \right)\left( {\begin{array}{*{20}c} F \\ {\tau_{1q} } \\ {\tau_{2q} } \\ {\tau_{3q} } \\ \end{array} } \right) $$

Appendix 2

$$ \begin{aligned} & \varvec{M} = \left[ {\begin{array}{*{20}c} {m_{11} } & {m_{12} } & {m_{13} } \\ {m_{21} } & {m_{22} } & {m_{23} } \\ {m_{31} } & {m_{32} } & {m_{33} } \\ \end{array} } \right] \\ & \quad \quad m_{11} = \frac{{{\text{I}}_{2xx} + {\text{I}}_{3xx} + {\text{I}}_{2yy} }}{2} + {\text{I}}_{3yy} + {\text{I}}_{1zz} - \frac{{\left( {{\text{I}}_{3xx} + {\text{I}}_{3yy} + {\text{m}}_{3} {\text{r}}_{3com}^{2} } \right){\text{cos(2}}q_{2} + 2q_{3} )}}{2} \\ & \quad \quad \quad \,\, + \frac{{{\text{l}}_{2}^{2} {\text{m}}_{3} + {\text{m}}_{2} {\text{r}}_{2com}^{2} + {\text{m}}_{3} {\text{r}}_{3com}^{2} }}{2} + \frac{{\left( {{\text{I}}_{2yy} - {\text{I}}_{2xx} {\text{ + l}}_{2}^{2} {\text{m}}_{3} + {\text{ m}}_{2} {\text{r}}_{2com}^{2} } \right){\text{cos2}}q_{2} }}{2} \\ & \quad \quad \quad \,\, + {\text{l}}_{2} {\text{m}}_{3} {\text{r}}_{3com} { \cos }q_{3} + {\text{l}}_{2} {\text{m}}_{3} {\text{r}}_{3com} {\text{cos(2}}q_{2} + q_{3} )\\ & \quad \quad m_{12} = 0 \\ & \quad \quad m_{13} = 0 \\ & \quad \quad m_{22} = {\text{m}}_{3} {\text{l}}_{2}^{2} + 2 {\text{m}}_{3} { \cos }q_{3} {\text{l}}_{2} {\text{r}}_{3com} + {\text{m}}_{2} {\text{r}}_{2com}^{2} + {\text{m}}_{3} {\text{r}}_{3com}^{2} + {\text{I}}_{2zz} + {\text{I}}_{3zz} \\ & \quad \quad m_{23} = m_{32} = {\text{m}}_{3} {\text{r}}_{3com}^{2} + {\text{l}}_{2} {\text{m}}_{3} { \cos }q_{3} {\text{r}}_{3com} + {\text{I}}_{3zz} \\ & \quad \quad m_{33} = {\text{m}}_{3} {\text{r}}_{3com}^{2} + {\text{I}}_{3zz} \\ \end{aligned} $$
$$ \begin{aligned} & \varvec{C}\left( {\varvec{q},\dot{\varvec{q}}} \right) = \\ & \quad \quad \left[ \begin{aligned} & - \dot{q}_{1} (\left( {{\text{I}}_{2yy} \dot{q}_{2} - {\text{I}}_{2xx} \dot{q}_{2} + {\text{l}}_{2}^{2} {\text{m}}_{ 3} \dot{q}_{2} + {\text{m}}_{ 2} \dot{q}_{2} r_{2com}^{2} } \right){\text{sin2}}q_{2} \\ & + \left( {{\text{I}}_{3yy} \dot{q}_{3} + {\text{ I}}_{3yy} \dot{q}_{2} - {\text{I}}_{3xx} \dot{q}_{3} - {\text{I}}_{3xx} \dot{q}_{2} + {\text{m}}_{ 3} \dot{q}_{2} r_{3com}^{2} + {\text{m}}_{ 3} \dot{q}_{3} r_{3com}^{2} } \right){\text{sin(2}}q_{2} + 2q_{3} ) { } \\ & + \left( { 2 {\text{l}}_{ 2} {\text{m}}_{ 3} \dot{q}_{2} r_{3com} + {\text{l}}_{ 2} {\text{m}}_{ 3} \dot{q}_{2} r_{3com} } \right){\text{sin(2}}q_{2} + q_{3} )+ {\text{l}}_{ 2} {\text{m}}_{ 3} \dot{q}_{3} r_{3com} { \sin }q_{3} )\\ & \quad (\left( {{\text{I}}_{2yy} \dot{q}_{1}^{2} - {\text{I}}_{2xx} \dot{q}_{1}^{2} } \right){\text{sin2}}q_{2} ) / 2- (\left( {{\text{I}}_{3xx} \dot{q}_{1}^{2} + {\text{I}}_{3yy} \dot{q}_{1}^{2} } \right){\text{sin(2}}q_{2} + 2q_{3} ) ) / 2 { } \\ & \quad + (\left( {{\text{l}}_{2}^{2} {\text{m}}_{ 3} \dot{q}_{1}^{2} + {\text{m}}_{ 2} \dot{q}_{1}^{2} r_{2com}^{2} } \right){\text{sin2}}q_{2} ) / 2+ ( {\text{m}}_{ 3} \dot{q}_{1}^{2} r_{3com}^{2} {\text{sin(2}}q_{2} + 2q_{3} ) ) / 2 { } \\ & \quad - {\text{l}}_{ 2} {\text{m}}_{ 3} \dot{q}_{3}^{2} r_{3com} { \sin }q_{3} + {\text{l}}_{ 2} {\text{m}}_{ 3} \dot{q}_{1}^{2} r_{3com} {\text{sin(2}}q_{2} + q_{3} )- 2 {\text{l}}_{ 2} {\text{m}}_{ 3} \dot{q}_{2} \dot{q}_{3} r_{3com} { \sin }q_{3} \\ & \quad \quad \quad ( {\text{I}}_{3yy} \dot{q}_{1}^{2} {\text{sin(2}}q_{2} + 2q_{3} ) ) / 2- ( {\text{I}}_{3xx} \dot{q}_{1}^{2} {\text{sin(2}}q_{2} + 2q_{3} ) ) / 2 { } \\ & \quad \quad \quad + ( {\text{m}}_{ 3} \dot{q}_{1}^{2} r_{3com}^{2} {\text{sin(2}}q_{2} + 2q_{3} ) ) / 2+ ( {\text{l}}_{ 2} {\text{m}}_{ 3} \dot{q}_{1}^{2} r_{3com} { \sin }q_{3} ) / 2 { } \\ & \quad \quad \quad + {\text{l}}_{ 2} {\text{m}}_{ 3} \dot{q}_{2}^{2} r_{3com} { \sin }q_{3} + ( {\text{l}}_{ 2} {\text{m}}_{ 3} \dot{q}_{1}^{2} r_{3com} {\text{sin(2}}q_{2} + q_{3} ) ) / 2\\ \end{aligned} \right] \\ \end{aligned} $$
$$ \begin{aligned} & \varvec{G}\left( \varvec{q} \right) = \\ & \quad \left[ {\begin{array}{*{20}c} 0 \\ { - {\text{m}}_{ 3} {\text{g(}}r_{3com} ( {\text{cos}}q_{2} { \cos }q_{3} - { \sin }q_{2} { \sin }q_{3} )+ {\text{l}}_{ 2} { \cos }q_{2} )- {\text{m}}_{ 2} {\text{g}}r_{2com} { \cos }q_{2} } \\ { - {\text{m}}_{ 3} {\text{g}}r_{3com} ( {\text{cos}}q_{2} { \cos }q_{3} - { \sin }q_{2} { \sin }q_{3} )} \\ \end{array} } \right] \\ \end{aligned} $$

Appendix 3

$$ \begin{aligned} & q_{1} = a\tan 2\left( {x_{y} ,x_{x} } \right) \\ & q_{3} = \pm \left( {\pi - a\cos \left( {\frac{{\left( {x_{z} - l_{1} } \right)^{2} + x_{x}^{2} + x_{y}^{2} - l_{2}^{2} - l_{3}^{2} }}{{2l_{2} l_{3} }}} \right)} \right) \\ & q_{2} = a\tan 2\left( {x_{z} - l_{1} ,\sqrt {x_{x}^{2} + x_{y}^{2} } } \right) - a\tan 2\left( {l_{2} + l_{3} \cos q_{3} ,l_{3} \sin q_{3} } \right) \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, J., Liu, H., Yuan, B., Wang, X., Liang, B. (2019). A New Concept of UAV Recovering System. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11742. Springer, Cham. https://doi.org/10.1007/978-3-030-27535-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27535-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27534-1

  • Online ISBN: 978-3-030-27535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics