Skip to main content

Future Prospects of Spectral CT: Photon Counting

  • Chapter
  • First Online:
Computed Tomography

Abstract

Dual-energy spectral CT has demonstrated numerous clinical benefits, yet there is potential to further improve the quantity and quality of acquired spectral data. Clinical dual-energy CT scanners are limited to two spectral measurements that overlap in spectral content. Photon-counting detectors use direct-conversion semiconductors, combined with pulse-height analysis electronics, to sort detected photons into energy bins. Photon-counting detectors can acquire more than two spectral measurements simultaneously, while also acquiring a nonspectral CT image. In addition to the spectral acquisition capabilities, photon-counting detectors have the additional benefits of higher spatial resolution and improved dose efficiency, compared to conventional CT detectors. This chapter explains the basic operation of photon-counting detectors and describes the potential benefits of photon-counting CT (PCCT), as well as the challenges of photon-counting technology. Examples are provided demonstrating the improved nonspectral CT images and new material decomposition applications made possible by PCCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knoll GF. Radiation detection and measurement. 3rd ed. New York: Wiley; 2000.

    Google Scholar 

  2. Schlomka JP, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol. 2008;53(15):4031–47.

    Article  CAS  PubMed  Google Scholar 

  3. Yu Z, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol. 2016;61(4):1572.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Si-Mohamed S, et al. Review of an initial experience with an experimental spectral photon-counting computed tomography system. Nucl Inst Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2017;873:27–35.

    Article  CAS  Google Scholar 

  5. Bornefalk H, Danielsson M. Photon-counting spectral computed tomography using silicon strip detectors: a feasibility study. Phys Med Biol. 2010;55(7):1999–2022.

    Article  PubMed  Google Scholar 

  6. Duan X et al. Electronic noise in CT detectors: impact on image noise and artifacts. 2013. https://doi.org/10.2214/AJR.12.10234.

    Article  PubMed  Google Scholar 

  7. Yu Z, et al. Noise performance of low-dose CT: comparison between an energy integrating detector and a photon counting detector using a whole-body research photon counting CT scanner. J Med Imaging. 2016;3(4):043503.

    Article  Google Scholar 

  8. Baek J, Pineda AR, Pelc NJ. To bin or not to bin? The effect of CT system limiting resolution on noise and detectability. Phys Med Biol. 2013;58(5):1433.

    Article  PubMed  Google Scholar 

  9. Tapiovaara MJ, Wagner RF. SNR and DQE analysis of broad spectrum X-ray imaging. Phys Med Biol. 1985;30(6):519–29.

    Article  CAS  Google Scholar 

  10. Giersch J, Niederlöhner D, Anton G. The influence of energy weighting on X-ray imaging quality. Nucl Inst Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2004;531(1–2):68–74.

    Article  CAS  Google Scholar 

  11. Schmidt TG. Optimal ‘image-based’ weighting for energy-resolved CT. Med Phys. 2009;36(7):3018–27.

    Article  PubMed  Google Scholar 

  12. Kappler S, et al. Multi-energy performance of a research prototype CT scanner with small-pixel counting detector. Proc SPIE. 2013;8668:86680O–86680O–8.

    Google Scholar 

  13. Schmidt TG, Zimmerman KC, Sidky EY. The effects of extending the spectral information acquired by a photon-counting detector for spectral CT. Phys Med Biol. 2015;60(4):1583–600.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krauss B, Grant KL, Schmidt BT, Flohr TG. The importance of spectral separation. Investig Radiol. 2015;50(2):114–8.

    Article  Google Scholar 

  15. Roessl E, Proksa R. K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52(15):4679–96.

    Article  CAS  PubMed  Google Scholar 

  16. Touch M, Clark DP, Barber W, Badea CT. A neural network-based method for spectral distortion correction in photon counting x-ray CT. Phys Med Biol. 2016;61(16):6132–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu C, Danielsson M, Bornefalk H. Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Trans Nucl Sci. 2011;58(3):614–25.

    Article  CAS  Google Scholar 

  18. Shikhaliev PM, Fritz SG, Chapman JW. Photon counting multienergy x-ray imaging: effect of the characteristic x rays on detector performance. Med Phys. 2009;36(11):5107–19.

    Article  CAS  PubMed  Google Scholar 

  19. Taguchi K, Frey EC, Wang X, Iwanczyk JS, Barber WC. An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting x-ray detectors. Med Phys. 2010;37:3957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang AS, Harrison D, Lobastov V, Tkaczyk JE. Pulse pileup statistics for energy discriminating photon counting x-ray detectors. Med Phys. 2011;38(7):4265–75.

    Article  PubMed  Google Scholar 

  21. Taguchi K, Iwanczyk JS. Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys. 2013;40(10):100901.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koenig T, et al. Charge summing in spectroscopic X-ray detectors with high-Z sensors. IEEE Trans Nucl Sci. 2013;60(6):4713–8.

    Article  CAS  Google Scholar 

  23. Koenig T, et al. How spectroscopic x-ray imaging benefits from inter-pixel communication. Phys Med Biol. 2014;59(20):6195–213.

    Article  PubMed  Google Scholar 

  24. Liu X, Grönberg F, Sjölin M, Karlsson S, Danielsson M. Count rate performance of a silicon-strip detector for photon-counting spectral CT. Nucl Inst Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2016;827:102–6.

    Article  CAS  Google Scholar 

  25. Hsieh SS, Fleischmann D, Pelc NJ. Dose reduction using a dynamic, piecewise-linear attenuator. Med Phys. 2014;41(2):021910.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Szczykutowicz TP, Mistretta CA. Design of a digital beam attenuation system for computed tomography: part I. System design and simulation framework. Med Phys. 2013;40(2):021905.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hsieh SS, Pelc NJ. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors. Phys Med Biol. 2014;59(11):2829–47.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schmidt TG, Pektas F. Region-of-interest material decomposition from truncated energy-resolved CT. Med Phys. 2011;38(10):5657–66.

    Article  PubMed  Google Scholar 

  29. Xu Q, et al. Image reconstruction for hybrid true-color micro-CT. IEEE Trans Biomed Eng. 2012;59(6):1711–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu Z, et al. How low can we go in radiation dose for the data-completion scan on a research whole-body photon-counting computed tomography system. J Comput Assist Tomogr. 2016;40:663–70.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taguchi K, Xu J, Srivastava S, Tsui BMW, Cammin J, Tang Q. Interior region-of-interest reconstruction using a small, nearly piecewise constant subregion. Med Phys. 2011;38:1307.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Johns PC, Yaffe MJ. Correction of pulse-height spectra for peak pileup effects using periodic and random pulse generators. Nucl Inst Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 1987;255(3):559–81.

    Article  Google Scholar 

  33. Gardner RP, Wielopolski L. A generalized method for correcting pulse-height spectra for the peak pile-up effect due to double sum pulses: part I. Predicting spectral distortion for arbitrary pulse shapes. Nucl Inst Methods. 1977;140(2):289–96.

    Article  CAS  Google Scholar 

  34. Roessl E, Daerr H, Proksa R. A Fourier approach to pulse pile-up in photon-counting x-ray detectors. Med Phys. 2016;43(3):1295.

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, et al. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications. J Med Imaging. 2015;2(3):033502.

    Article  Google Scholar 

  36. Cammin J, Xu J, Barber WC, Iwanczyk JS, Hartsough NE, Taguchi K. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT. Med Phys. 2014;41(4):041905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Schmidt TG, Barber RF, Sidky EY. A spectral CT method to directly estimate basis material maps from experimental photon-counting data. IEEE Trans Med Imaging. 2017;36(9):1808–19.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerised tomography. Phys Med Biol. 1976;21(5):733–44.

    Article  CAS  PubMed  Google Scholar 

  39. Wu D, Zhang L, Zhu X, Xu X, Wang S. A weighted polynomial based material decomposition method for spectral x-ray CT imaging. Phys Med Biol. 2016;61(10):3749–83.

    Article  CAS  PubMed  Google Scholar 

  40. Alvarez RE. Estimator for photon counting energy selective x-ray imaging with multibin pulse height analysis. Med Phys. 2011;38:2324.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zimmerman KC, Schmidt TG. Experimental comparison of empirical material decomposition methods for spectral CT. Phys Med Biol. 2015;60(8):3175–91.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Persson M, et al. Energy-resolved CT imaging with a photon-counting silicon-strip detector. Phys Med Biol. 2014;59(22):6709–27.

    Article  PubMed  Google Scholar 

  43. Panta RK, et al. Element-specific spectral imaging of multiple contrast agents: a phantom study. J Instrum. 2018;13(02):T02001–T02001.

    Article  Google Scholar 

  44. Leng S, et al. Dose-efficient ultrahigh-resolution scan mode using a photon counting detector computed tomography system. J Med Imaging. 2016;3(4):043504.

    Article  Google Scholar 

  45. Le HQ, Ducote JL, Molloi S. Radiation dose reduction using a CdZnTe-based computed tomography system: comparison to flat-panel detectors. Med Phys. 2010;37(3):1225–36.

    Article  CAS  PubMed Central  Google Scholar 

  46. Pourmorteza A, et al. Photon-counting CT of the brain: in vivo human results and image-quality assessment. AJNR Am J Neuroradiol. 2017;38(12):2257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Symons R, et al. Photon-counting computed tomography for vascular imaging of the head and neck. Investig Radiol. 2018;53(3):135–42.

    Article  Google Scholar 

  48. Symons R, et al. Feasibility of dose-reduced chest CT with photon-counting detectors: initial results in humans. Radiology. 2017;285(3):980–9.

    Article  PubMed  Google Scholar 

  49. Pourmorteza A, et al. Abdominal imaging with contrast-enhanced photon-counting CT: first human experience. Radiology. 2016;279(1):239–45.

    Article  PubMed  Google Scholar 

  50. Roessl E, Herrmann C. Cram{é}r--Rao lower bound of basis image noise in multiple-energy x-ray imaging. Phys Med Biol. 2009;54(5):1307.

    Article  CAS  PubMed  Google Scholar 

  51. Roessl E et al. Preclinical spectral computed tomography of gold nano-particles. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011;648:S259–S264.

    Google Scholar 

  52. Pan D, et al. Computed tomography in color: nanoK-enhanced spectral CT molecular imaging. Angew Chem Int Ed. 2010;49(50):9635–9.

    Article  CAS  Google Scholar 

  53. Pan D, et al. An early investigation of ytterbium nanocolloids for selective and quantitative ‘multicolor’ spectral CT imaging. ACS Nano. 2012;6(4):3364–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roessl E, Brendel B, Engel K, Schlomka J, Thran A, Proksa R. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography. IEEE Trans Med Imaging. 2011;30:1678–90.

    Article  PubMed  Google Scholar 

  55. Symons R, et al. Dual-contrast agent photon-counting computed tomography of the heart: initial experience. Int J Cardiovasc Imaging. 2017;33(8):1253–61.

    Article  PubMed  Google Scholar 

  56. Cormode DP, et al. Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner. Sci Rep. 2017;7(1):4784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Muenzel D, et al. Spectral photon-counting CT: initial experience with dual–contrast agent K-edge colonography. Radiology. 2017;283(3):723–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks David Cormode (University of Pennsylvania), Mats Danielsson (KTH Royal Institute of Technology and Prismatic Sensors), Cynthia McCollough (Mayo Clinic), Salim Si-Mohamed (Hospices Civils de Lyon), and Yoad Yagil (Philips Healthcare) for sharing images and information for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taly Gilat Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, T.G. (2020). Future Prospects of Spectral CT: Photon Counting. In: Samei, E., Pelc, N. (eds) Computed Tomography . Springer, Cham. https://doi.org/10.1007/978-3-030-26957-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26957-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26956-2

  • Online ISBN: 978-3-030-26957-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics