Skip to main content

Network Visualization

  • Chapter
  • First Online:
Book cover Network Science

Abstract

Data visualization is the art and science of mapping data to graphical variables. In this context, networks give rise to unique difficulties because of inherent dependencies among their elements. We provide a high-level overview of the main challenges and common techniques to address them. They are illustrated with examples from two application domains, social networks and automotive engineering. The chapter concludes with opportunities for future work in network visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In automotive terminology, these are the bus systems that components are connected to, such as the CAN, MOST, or FlexRay bus. These domain-specific details are not relevant for the discussion here, and we hence simply refer to them as “subsystems.”

References

  • Abello, J. & van Ham, F. (2004), Matrix zoom: A visual interface to semi-external graphs, in Ward & Munzner, pp. 183–190. https://doi.org/10.1109/INFVIS.2004.46

  • Bae, J. & Watson, B. (2011), ‘Developing and evaluating quilts for the depiction of large layered graphs’, IEEE Trans. Vis. Comput. Graph.17(12), 2268–2275. https://doi.org/10.1109/TVCG.2011.187

  • Behrisch, M., Bach, B., Riche, N. H., Schreck, T. & Fekete, J. (2016), ‘Matrix reordering methods for table and network visualization’, Comput. Graph. Forum35(3), 693–716. https://doi.org/10.1111/cgf.12935

  • Bertin, J. (1983), Semiology of Graphics: Diagrams, Networks, Maps, University of Wisconsin Press, Madison, WI.

    Google Scholar 

  • Boettger, J., Brandes, U., Deussen, O. & Ziezold, H. (2008), ‘Map warping for the annotation of metro maps’, Computer Graphics and Applications28(5), 56–65.

    Article  Google Scholar 

  • Borgatti, S. P., Everett, M. G. & Johnson, J. C. (2018), Analyzing Social Networks, 2nd edn, Sage.

    Google Scholar 

  • Brandes, U. & Pich, C. (2006), Eigensolver methods for progressive multidimensional scaling of large data, in M. Kaufmann & D. Wagner, eds, ‘Graph Drawing, 14th International Symposium, GD 2006, Karlsruhe, Germany, September 18-20, 2006. Revised Papers’, Vol. 4372 of Lecture Notes in Computer Science, Springer, pp. 42–53. https://doi.org/10.1007/978-3-540-70904-6_6

  • Brandes, U. & Pich, C. (2008), An experimental study on distance-based graph drawing, in I. G. Tollis & M. Patrignani, eds, ‘Graph Drawing, 16th International Symposium, GD 2008, Heraklion, Crete, Greece, September 21–24, 2008. Revised Papers’, Vol. 5417 of Lecture Notes in Computer Science, Springer, pp. 218–229. https://doi.org/10.1007/978-3-642-00219-9_21

  • Brandes, U. (2016), Force-directed graph drawing, in M.-Y. Kao, ed., ‘Encyclopedia of Algorithms’, Springer, pp. 768–773. https://doi.org/10.1007/978-1-4939-2864-4_648

  • Brandes, U., Freeman, L. C. & Wagner, D. (2013), Social networks, in Tamassia, pp. 805–839.

    Google Scholar 

  • Brandes, U., Indlekofer, N. & Mader, M. (2012), ‘Visualization methods for longitudinal social networks and stochastic actor-oriented modeling’, Social Networks34(3), 291–308. https://doi.org/10.1016/j.socnet.2011.06.002

  • Brandes, U., Lerner, J., Lubbers, M. J., McCarty, C. & Molina, J. L. (2008), Visual statistics for collections of clustered graphs, in ‘IEEE Pacific Visualization Symposium’, pp. 47–54.

    Google Scholar 

  • Brandes, U. & Nick, B. (2011), ‘Asymmetric relations in longitudinal social networks’, IEEE Transactions on Visualization and Computer Graphics17(12), 2283–2290.

    Article  Google Scholar 

  • Díaz, J., Petit, J. & Serna, M. J. (2002), ‘A survey of graph layout problems’, ACM Comput. Surv.34(3), 313–356. http://doi.acm.org/10.1145/568522.568523

  • Dinkla, K., Westenberg, M. A. & van Wijk, J. J. (2012), ‘Compressed adjacency matrices: Untangling gene regulatory networks’, IEEE Trans. Vis. Comput. Graph.18(12), 2457–2466. https://doi.org/10.1109/TVCG.2012.208

  • Dwyer, T. (2009), ‘Scalable, versatile and simple constrained graph layout’, Computer Graphics Forum28(3), 991–998.

    Article  Google Scholar 

  • Elmqvist, N., Riche, Y., Riche, N. H. & Fekete, J. (2010), ‘Melange: Space folding for visual exploration’, IEEE Trans. Vis. Comput. Graph.16(3), 468–483. https://doi.org/10.1109/TVCG.2009.86

  • Gajer, P. & Kobourov, S. G. (2002), ‘GRIP: graph drawing with intelligent placement’, J. Graph Algorithms Appl.6(3), 203–224.

    Article  MathSciNet  Google Scholar 

  • Gansner, E. R., Hu, Y., North, S. C. & Scheidegger, C. E. (2011), Multilevel agglomerative edge bundling for visualizing large graphs, in G. D. Battista, J. Fekete & H. Qu, eds, ‘IEEE Pacific Visualization Symposium, PacificVis 2011, Hong Kong, China, 1–4 March, 2011’, IEEE Computer Society, pp. 187–194. https://doi.org/10.1109/PACIFICVIS.2011.5742389

  • Gansner, E. R., Koren, Y. & North, S. C. (2004), Graph drawing by stress majorization, in Pach, pp. 239–250. https://doi.org/10.1007/978-3-540-31843-9_25

  • Ghoniem, M., Fekete, J. & Castagliola, P. (2004), A comparison of the readability of graphs using node-link and matrix-based representations, in Ward & Munzner (2004), pp. 17–24. https://doi.org/10.1109/INFVIS.2004.1

  • Grant, R. (2018), Data Visualization: Charts, Maps, and Interactive Graphics, CRC Press.

    Google Scholar 

  • Hachul, S. & Jünger, M. (2004), Drawing large graphs with a potential-field-based multilevel algorithm, in Pach, pp. 285–295. https://doi.org/10.1007/978-3-540-31843-9_29

  • Hennig, M., Brandes, U., Pfeffer, J. & Mergel, I. (2012), Studying Social Networks – A Guide to Empirical Research, Campus.

    Google Scholar 

  • Henry, N. & Fekete, J. (2007), Matlink: Enhanced matrix visualization for analyzing social networks, in M. C. C. Baranauskas, P. A. Palanque, J. Abascal & S. D. J. Barbosa, eds, ‘Human-Computer Interaction—INTERACT 2007, 11th IFIP TC 13 International Conference, Rio de Janeiro, Brazil, September 10–14, 2007, Proceedings, Part II’, Vol. 4663 of Lecture Notes in Computer Science, Springer, pp. 288–302. https://doi.org/10.1007/978-3-540-74800-7_24

  • Henry, N., Fekete, J. & McGuffin, M. J. (2007), ‘Nodetrix: a hybrid visualization of social networks’, IEEE Trans. Vis. Comput. Graph.13(6), 1302–1309. https://doi.org/10.1109/TVCG.2007.70582

  • Holten, D. (2006), ‘Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data’, IEEE Trans. Vis. Comput. Graph.12(5), 741–748. https://doi.org/10.1109/TVCG.2006.147

  • Hu, Y. (2006), ‘Efficient, high-quality force-directed graph drawing’, The Mathematica Journal10(1), 37–71.

    Google Scholar 

  • Kerren, A., Purchase, H. C. & Ward, M. O., eds (2014), Multivariate Network Visualization—Dagstuhl Seminar #13201, Dagstuhl Castle, Germany, May 12–17, 2013, Revised Discussions, Vol. 8380 of Lecture Notes in Computer Science, Springer. https://doi.org/10.1007/978-3-319-06793-3

  • Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y. & Porter, M. A. (2014), ‘Multilayer networks’, J. Complex Networks2(3), 203–271. https://doi.org/10.1093/comnet/cnu016

  • Kobourov, S. G. (2013), Force-directed drawing algorithms, in Tamassia, pp. 383–408.

    Google Scholar 

  • Kruja, E., Marks, J., Blair, A. and Waters, R. C. (2001), A short note on the history of graph drawing, in P. Mutzel, M. Jünger & S. Leipert, eds, ‘Graph Drawing, 9th International Symposium, GD 2001 Vienna, Austria, September 23–26, 2001, Revised Papers’, Vol. 2265 of Lecture Notes in Computer Science, Springer, pp. 272–286. https://doi.org/10.1007/3-540-45848-4_22

  • Lietz, H., Wagner, C., Bleier, A. & Strohmaier, M. (2014), When politicians talk: Assessing online conversational practices of political parties on twitter, in ‘Proceedings of the Eighth International Conference on Weblogs and Social Media, ICWSM 2014.’, pp. 285–294. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8069

  • Maaten, L. v. d. & Hinton, G. (2008), ‘Visualizing data using t-SNE’, Journal of machine learning research9(Nov), 2579–2605.

    Google Scholar 

  • McGrath, C., Blythe, J. & Krackhardt, D. (1996), ‘Seeing groups in graph layouts’, Connections19(2), 22–29.

    Google Scholar 

  • Munzner, T. (2014), Visualization Analysis and Design, AK Peters/CRC Press.

    Google Scholar 

  • Newcomb, T. M. (1961), The Acquaintance Process, Holt, Rinehart, and Winston, New York, NY.

    Google Scholar 

  • Nocaj, A., Ortmann, M. & Brandes, U. (2015), ‘Untangling the hairballs of multi-centered, small-world online social media networks’, J. Graph Algorithms Appl.19(2), 595–618. https://doi.org/10.7155/jgaa.00370

  • Ortmann, M., Klimenta, M. & Brandes, U. (2017), ‘A sparse stress model’, J. Graph Algorithms Appl.21(5), 791–821. https://doi.org/10.7155/jgaa.00440

  • Perry, B. L., Pescosolido, B. A. & Borgatti, S. P. (2018), Egocentric Network Analysis, Cambridge University Press.

    Google Scholar 

  • Purchase, H. C. (2000), ‘Effective information visualisation: a study of graph drawing aesthetics and algorithms’, Interacting with Computers13(2), 147–162. https://doi.org/10.1016/S0953-5438(00)00032-1

  • Roberts, M. J. (2012), Underground Maps Unravelled, Self-published, Wivenhoe, UK.

    Google Scholar 

  • Roweis, S. T. & Saul, L. K. (2000), ‘Nonlinear dimensionality reduction by locally linear embedding’, Science290(5500), 2323–2326.

    Article  Google Scholar 

  • Sedlmair, M., Frank, A., Munzner, T. & Butz, A. (2012), ‘RelEx: Visualization for actively changing overlay network specifications’, IEEE transactions on visualization and computer graphics18(12), 2729–2738.

    Article  Google Scholar 

  • Shen, Z. & Ma, K. (2007), Path visualization for adjacency matrices, in K. Museth, T. Möller & A. Ynnerman, eds, ‘EuroVis07: Joint Eurographics—IEEE VGTC Symposium on Visualization, Norrköping, Sweden, 23–25 May 2007’, Eurographics Association, pp. 83–90. https://doi.org/10.2312/VisSym/EuroVis07/083-090

  • Tamassia, R., ed. (2013), Handbook on Graph Drawing and Visualization, Chapman and Hall/CRC.

    Google Scholar 

  • Tufte, E. R. (1983), The Visual Display of Quantitative Information, Graphics Press, Cheshire, CT.

    Google Scholar 

  • van Garderen, M., Pampel, B., Nocaj, A. & Brandes, U. (2017), ‘Minimum-displacement overlap removal for geo-referenced data visualization’, Computer Graphics Forum36(3), 423–433. https://doi.org/10.1111/cgf.13199

  • von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J. J., Fekete, J. & Fellner, D. W. (2010), Visual analysis of large graphs, in H. Hauser & E. Reinhard, eds, ‘Eurographics 2010—State of the Art Reports, Norrköping, Sweden, May 3–7, 2010’, Eurographics Association, pp. 37–60. https://doi.org/10.2312/egst.20101061

  • Wang, Y., Wang, Y., Sun, Y., Zhu, L., Lu, K., Fu, C.-W., Sedlmair, M., Deussen, O. & Chen, B. (2018), ‘Revisiting stress majorization as a unified framework for interactive constrained graph visualization’, IEEE transactions on visualization and computer graphics24(1), 489–499.

    Article  Google Scholar 

  • Ware, C., Purchase, H. C., Colpoys, L. & McGill, M. (2002), ‘Cognitive measurements of graph aesthetics’, Information Visualization1(2), 103–110. https://doi.org/10.1057/palgrave.ivs.9500013

  • Wattenberg, M. (2006), Visual exploration of multivariate graphs, in ‘Proceedings of the SIGCHI conference on Human Factors in computing systems’, ACM, pp. 811–819.

    Google Scholar 

  • Zinsmaier, M., Brandes, U., Deussen, O. & Strobelt, H. (2012), ‘Interactive level-of-detail rendering of large graphs’, IEEE Trans. Vis. Comput. Graph.18(12), 2486–2495. https://doi.org/10.1109/TVCG.2012.238

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrik Brandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brandes, U., Sedlmair, M. (2019). Network Visualization. In: Biagini, F., Kauermann, G., Meyer-Brandis, T. (eds) Network Science. Springer, Cham. https://doi.org/10.1007/978-3-030-26814-5_2

Download citation

Publish with us

Policies and ethics