Skip to main content
  • 829 Accesses

Abstract

The various historic hypotheses regarding narcosis are reviewed. The chapter closes with the action on the multimodal receptors of inhalatory anaesthetics.

If many theories are used to explain a single phenomenon, then none of them is completely convincing

(Livio Zava, general surgeon, Treviso-Italy)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giardina B. Libro di Anestesia. Torino: Cortina Editore; 1976.

    Google Scholar 

  2. Aggarwal P, Wali JP. Lidocaine in refractory status epilepticus: a forgotten drug in the emergency department. Am J Emerg Med. 1993;11:243–4.

    Article  CAS  PubMed  Google Scholar 

  3. Walker IA, Slovis CM. Lidocaine in the treatment of status epilepticus. Acad Emerg Med. 1997;4:918–22.

    Article  CAS  PubMed  Google Scholar 

  4. Alemanno F. Middle Interscalene block (Alemanno technique), In: Alemanno F, Bosco M, Barbati A. Anesthesia of the upper limb. A state of art guide. Italia: Springer; 2014. p. 80 (6.13.1).

    Google Scholar 

  5. Laborit H. Les Régulations metaboliques. Paris: Masson & Cie Editeurs; 1965.

    Google Scholar 

  6. Laborit H. L’anesthesie facilitee par les synergies medicamentoses. Paris: Masson et Cie; 1951.

    Google Scholar 

  7. Laborit H, Huguenard P, Allaume R. Un nouvou stabilisateur vegetatif : le 4560 RP (chloropromazine). Presse méd. 1952;60(10):206–8.

    CAS  PubMed  Google Scholar 

  8. Carlon CA, Cavalloni L. Importanza dei riflessi neurovegetativi durante narcosi e nella genesi della malattia postoperatoria. Comunicato alla “Società Triveneta di Chirurgia” ed alla “Sez. Alta Italia della Soc. Ital. di Anestesiologia”, il 21/12/1952. Acta Anaesth; Vol. IV (1) Gennaio-Febbraio 1953.

    Google Scholar 

  9. Ciocatto E. La neuroleptoanalgesia. In: Ciocatto E, editor. Lezioni di Anestesiologia e Rianimazione, Cap. 7. Torino: Cortina Editore; 1977. p. 147–54.

    Google Scholar 

  10. De Castro G, Mundeleer P. Anesthésie sans sommeil: “Neuroleptoanalgesie”. Acta Chir Belg. 1959;58:689–93.

    Google Scholar 

  11. De Castro G, Mundeleer P. Anesthésie sans barbituriques. La neuroleptoanalgésie. Anesth Analg. 1959;16:1022.

    Google Scholar 

  12. De Castro G, Mundeleer P. Dehydrobenzoperidol et phentanyl: Due anesthésiques novoux qui appartent de nouvelle possibilities à la neuroleptonalgésie. In: Symposium sur la neuroleptoanalgésie dans le cadre du Congrès Europeen d’Anesthesiologie à Vienne le 5 septembre 1962.

    Google Scholar 

  13. Galzigna L, Vincenti E. Lezioni di biochimica applicata. Padova: Cortina Editore; 1981.

    Google Scholar 

  14. Claude B. Leçons sur les anesthésiques et sur l’asphyxie. Paris: J. B. Baillier Editeur; 1875.

    Google Scholar 

  15. Charles R. Traité de métapsychique. Paris: Librairie Félix Alcan; 1922.

    Google Scholar 

  16. Meyer HH. Die Narkose und ihre allgemeine Theorie. In: Handbuch der normalen und pathologiscen Phisyiologie, vol. 1. Berlin: Bethe und al. Verlag; 1927. p. 531.

    Chapter  Google Scholar 

  17. Overton E. Studien ȕber die Narkose zugleichen ein Beitrag zu allgemeinen Pharmakologie. Jena: Von Gustav Fischer Verlag; 1901.

    Google Scholar 

  18. Meyer K, Hemmi H. Studien ȕber die Narkose Theorie. Biochem Z. 1935;39:277.

    Google Scholar 

  19. Franks NP, Lieb WR. Molecular mechanism of general anesthesia. Nature. 1982;300:487–93.

    Article  CAS  PubMed  Google Scholar 

  20. Franks NP, Lieb WR. What is the molecular nature of general anesthetics target sites ? Trends Pharmacol Sci. 1987;8:169–74.

    Article  CAS  Google Scholar 

  21. Franks NP, Lieb WR. Where do general anesthetics act ? Nature. 1978;274:339–42.

    Article  CAS  PubMed  Google Scholar 

  22. Quastel JH. Effects of anaesthetics, depressants and tranquilizers on brai metabolism. In: Elliott KAC, Page IH, Quastel JH, editors. Neurochemistry. Springfield: Charles C Thomas – Publisher; 1962. p. 790–812.

    Google Scholar 

  23. Chance B, Hollunger G. Inhibition of electron and energy transfer in mitochondria. Effect of amytal, thiopental, rotenone, progesterone and methylene glycol. J Biol Chem. 1963;278:418–31.

    Google Scholar 

  24. Pumphrey AM, Redfearn ER. Inhibition of succinate oxidation by barbiturates in tightly coupled mitochondria. Biochem Biophys Acta. 1963;74:317–27.

    Article  CAS  PubMed  Google Scholar 

  25. Hulme NA, Krantz JC. Effect of ethyl-ether on oxidative phosphorylation in the brain. Anesthesiology. 1955;16:627–31.

    Article  CAS  PubMed  Google Scholar 

  26. Levy L, Featherstone RM. The effect of xenon and nitrous oxide on “in vitro” Guinea pig brain respiration and oxidative phosphorylation. J Pharmacol Exp Ther. 1954;110:221–5.

    CAS  PubMed  Google Scholar 

  27. Hanna JP, Ramundo ML. Rhabdomyolysis and hypoxia associated with prolonged propofol infusion in children. Neurology. 1998;50:301–3.

    Article  CAS  PubMed  Google Scholar 

  28. Vasile B, et al. La fisiopatologia della sindrome da infusione di propofol: un nome semplice per una sindrome complessa. Intensive Care Med. 2003;29:1417–25.

    Article  PubMed  Google Scholar 

  29. Parke TJ, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five reports. BMJ. 1992;305:613–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strikland RA, Murray MJ. Fatal metabolic acidosis in paediatric patient receiving an infusion of propofol in the intensive care unit: is there a relationship? Crit Care Med. 1995;23:405–9.

    Article  Google Scholar 

  31. Van Straaten EA, et al. Rhabdomyolysis and pulmonary hypertension in a child, possibly due to long-term highdose propofol infusion. Crit Care Med. 1996;22:997.

    Google Scholar 

  32. Bernsohn J, Namajuk J, Cchrane LS. Inhibition of brain cytochrome oxidase and ATP-ase by chloropromazine analogues. Proc Soc Exp Biol Med. 1956;92:201–3.

    Article  CAS  PubMed  Google Scholar 

  33. Ferri S, Galatulas I. Deidrobenzoperidolo e consumo di ossigeno del tessuto nervoso in presenza o no di alcuni metaboliti del ciclo di Krebs. Boll Soc Ital Biol. 1965:1240.

    Google Scholar 

  34. Miller SL. A theory of gaseous anesthetics. Physiology. 1961;47:1515–24.

    CAS  Google Scholar 

  35. Pauling L. A molecular theory of general anesthesia. Science. 1961;134:15–21.

    Article  CAS  PubMed  Google Scholar 

  36. Gray HB. Chemical bonds: an introduction to atomic and molecular structure. Mill Valley: University Science Books; 1994. p. 232.

    Google Scholar 

  37. Giunta F, Natale G, Delturco M, Deltacca M. Xenon a review of its anesthetic and pharmacological properties. Appl Cardiopulm Pathophysiol. 1996;6(2):95–103.

    Google Scholar 

  38. Giunta F, Ferrari A, Del Turco M, Ferrari E. Caratteristiche anestetiche del gas Xenon. Minerva Anestesiol. 1997;63:355–66.

    Google Scholar 

  39. Giunta F, Ranieri VM, Natale G, Zucchi R, Ferrari A. Xenon anaesthesia: the italian experience. Appl Cardiopulm Pathophysiol. 2000;9:57–8.

    Google Scholar 

  40. Jordan BD, Wright EL. Xenon as an anesthetic agent. AANA J. 2010;78(5):387–92.

    PubMed  Google Scholar 

  41. Barber AF, Carnevale V, Klein ML, Eckenhoff RG, Covarrubias M. Modulation of a voltage gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms. PNAS. 2014;111(N° 18):6726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moore JT, et al. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr Biol. 2012;22(21):2008–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eckenhoff RG, Johansson JS. Molecular interactions between inhaled anesthetics and proteins. Pharmacol Rev. 1997;49(4):343–68.

    CAS  PubMed  Google Scholar 

  44. Bergmann W. Relief of postanesthetic vomiting trough pyridoxine. Can Med Assoc J. 1947;56(May):554.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Stricker C, Goldblatt S, Warm IS, Jackson DE. Clinical experiences with use of trichloroethylene in production of over 300 analgesics and anesthesia. Anesth Analg. 1935;14:68–71.

    Google Scholar 

  46. Busato G, Maifreni F, Alemanno F. Alotano e fegato. Acta Anaesthesiol Ital. 1973;XXIV, Fasc V:573–605.

    Google Scholar 

  47. Torri G. Anestetici Inalatori. Torino: Edizioni Minerva Medica; 2007.

    Google Scholar 

  48. Baxter PJ, Kharasch ED. Rehydration of desiccated Baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine. Anesthesiology. 1997 May;86(5):1061–5.

    Article  CAS  PubMed  Google Scholar 

  49. Wann KT, MacDonald AG. Actions and interactions of high pressure and general anaesthetics. Prog Neurobiol. 1988;30:271–307.

    Article  CAS  PubMed  Google Scholar 

  50. Joly V, Richebe P, Guiqnard B, et al. Remifentanil-induced postoperative analgesia and its preventions with small-doses ketamine. Anesthesiology. 2005;103(1):147–55.

    Article  CAS  PubMed  Google Scholar 

  51. Santonocito C, Noto A, Crimi C, Sanfilippo F. Remifentanil-induced postoperative hyperalgesia: current perspectives on mechanisms and therapeutic strategies. Local Reg Anesth. 2018;11:15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marzotti A, Alemanno F, Pierri A, Costa PP, Sammartano G. Valutazione di alcuni parametri bioumorali rilevati su sangue e linfa di animali sottoposti a shock sperimentale in condizioni diverse di anestesia. Acta Anaesthesiol Ital. 1976;27(N° 2):199–210.

    Google Scholar 

Further Reading

  • Alfa elica. http://it.wikipedia.org/wiki/Alfa_elica.

  • Carlon CA, Mondini PG. Manuale di Anestesia 1949. Padova: CEDAM.

    Google Scholar 

  • Collins VJ. Priciples of anesthesiology. Philadelphia: Lea & Febiger; 1976.

    Google Scholar 

  • Cray SH, Robinson BH, Cox PN. Lactic acidemia and bradyarrhythmia in a child sedated with propofol. Crit Care Med. 1998;26:2089–92.

    Article  Google Scholar 

  • Dubouchet N, Le Brigand J. Anesthesie e reanimation, vol. 1. Paris: Editions Medicales Flammarion; 1957. p. 139.

    Google Scholar 

  • Gasparetto A, Giron G. Introduzione biochimica all’anestesia. Acta Anaesthesiol. 1965;XVI(III):415–22.

    Google Scholar 

  • Gasparetto A, Simone M, Tayoli E. Basi biochimiche dell’Anestesia. Tipografia Editrice “La Garangola”. Estratto da Acta Anaesthesiologica Vol XIX Fasc. 5 Settembre-Ottobre 1968.

    Google Scholar 

  • Hales TG, Jones MV, Harrison NL. Evidence for subunit dependent direct activation of GABA A receptor by isoflurane. Anesthesiology. 1992;77:698.

    Article  Google Scholar 

  • https://it.wikipedia.org/wiki/Desflurano

  • https://it.wikipedia.org/wiki/Sevoflurano

  • Koishi R, et al. A superfamily of voltage-gated sodium channels in bacteria. J Biol Chem. 2004;279(10):9532–8.

    Article  CAS  PubMed  Google Scholar 

  • Kuperman AS, et al. Procaine action: antagonism by adenosine triphosphate and other nucleotides. Science. 1964;144:1222–3.

    Article  CAS  PubMed  Google Scholar 

  • Lin LH, Whiting P, Hrris RA. Molecular determinants of general anesthetic action: role of GABA receptor structure. J Neurochem. 1993;60(4):1548–53.

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Kranz JC. The “in vitro” studies of the influence of adenosine triphosphste (ATP) dephosphorylation by central depressants and stimulants. Anesthesiology. 1953;14:348–58.

    Article  CAS  PubMed  Google Scholar 

  • Natale G, Giunta F, et al. Effects of repeated exposures to xenon on rat adrenal cortex ultrastructure. J Submicrosc Cytol Pathol. 2002;34(3):329–34.

    CAS  PubMed  Google Scholar 

  • Wakai A, Kohno T, Yamakura T, Okamoto M, Ataka T, Baba H. Action of isoflurane on the substantia gelatinosa neurons of the adult rat spinal cord. Anesthesiology. 2005 Feb;102(2):379–86.

    Article  CAS  PubMed  Google Scholar 

  • Yu FH, Yarov-Yarovoy V, Gutman GA, Catteral WA. Overview of molecular relationships in the voltage-gated Ion channel superfamily. Pharmacol Rev. 2005;57:387–95.

    Article  CAS  PubMed  Google Scholar 

  • Zucchi R, RoncaTestoni S, Giunta F, Ronca G. Interaction of isoflurane, halothane and xenon with skeletal muscle ryanodine receptor. In: Xenon anesthesia today. Ospedaletto: Pacini Editore; 1997. p. 77–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Alemanno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alemanno, F. (2020). Theories of Narcosis. In: Alemanno, F. (eds) Biochemistry for Anesthesiologists and Intensivists. Springer, Cham. https://doi.org/10.1007/978-3-030-26721-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26721-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26720-9

  • Online ISBN: 978-3-030-26721-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics