Skip to main content

E-waste: Global Scenario, Constituents, and Biological Strategies for Remediation

  • Chapter
  • First Online:
Book cover Electronic Waste Pollution

Part of the book series: Soil Biology ((SOILBIOL,volume 57))

Abstract

Global technology development and industrialization have led to the increased usage of electronic gadgets. Electronic waste or e-waste is one of the emerging environmental issues in the developing countries. Much of the e-waste globally generated is recycled in the unregulated informal sector and results in significant risk to environmental health. These wastes also consist of economically valuable minerals such as copper, silver, and gold. The multitude of toxic heavy metals present in the components of discarded electrical and electronic equipment such as cadmium, arsenic, antimony, chromium, lead, mercury, selenium, beryllium, brominated flame retardants, PAHs, and PCBs pose threats to the environment. The usage of microbes and plants in minimizing the toxicity of chemicals and metals in the environment is eco-friendly and cost effective. This chapter provides a concise overview of the volume of e-waste generated globally, disposal and reuse/recycle practices; forecasts e-waste production, and discusses environmentally sustainable remediation strategies. The principles, advantages, and disadvantages of bioleaching, biosorption, bioaccumulation, bioprecipitation, biomineralization, and phytoremediation techniques, which are recognized as biological strategies for remediation of contaminants released into different environmental matrices are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Homaidan AA, Alabdullatif JA, Al-Hazzani AA, Al-Ghanayem AA, Alabbad AF (2015) Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi J Biol Sci 22:795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  • Anh HQ, Nam VD, Tri TM, Ha NM, Ngoc NT, Mai PTN, Minh TB (2017) Polybrominated diphenyl ethers in plastic products, indoor dust, sediment and fish from informal e-waste recycling sites in Vietnam: a comprehensive assessment of contamination, accumulation pattern, emissions, and human exposure. Environ Geochem Health 39:935–954

    Article  CAS  PubMed  Google Scholar 

  • Arshadi M, Mousavi SM (2015) Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium. Bioresour Technol 175:315–324

    Article  CAS  PubMed  Google Scholar 

  • Awasthi AK, Zeng X, Li J (2016a) Integrated bioleaching of copper metal from waste printed circuit board—a comprehensive review of approaches and challenges. Environ Sci Pollut Res 23:21141–21156

    Article  CAS  Google Scholar 

  • Awasthi AK, Zeng X, Li J (2016b) Environmental pollution of electronic waste recycling in India: a critical review. Environ Pollut 211:259–270

    Article  CAS  PubMed  Google Scholar 

  • Bagda E, Tuzen M, Sarı A (2017) Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae). J Environ Radioact 175:7–14

    Article  PubMed  CAS  Google Scholar 

  • Bas AD, Deveci H, Yazici EY (2013) Bioleaching of copper from low grade scrap TV circuit boards using mesophilic bacteria. Hydrometallurgy 138:65–70

    Article  CAS  Google Scholar 

  • Bindschedler S, Bouquet TQTV, Job D, Joseph E, Junier P (2017) Fungal biorecovery of gold from e-waste. In: Advances in applied microbiology, vol 99. Academic Press, pp 53–81

    Google Scholar 

  • Borthakur A (2015) Generation and management of electronic waste in India: an assessment from stakeholders’ perspective. J Dev Soc 31:220–248

    Google Scholar 

  • Borthakur A, Govind M (2017) Emerging trends in consumers’ E-waste disposal behaviour and awareness: a worldwide overview with special focus on India. Resour Conserv Recycl 117:102–113

    Article  Google Scholar 

  • Breivik K, Armitage JM, Wania F, Sweetman AJ, Jones KC (2015) Tracking the global distribution of persistent organic pollutants accounting for e-waste exports to developing regions. Environ Sci Technol 50:798–805

    Article  PubMed  CAS  Google Scholar 

  • Brierley CL, Brierley JA (2013) Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97:7543–7552

    Article  CAS  PubMed  Google Scholar 

  • Chan JKY, Wong MH (2013) A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China. Sci Total Environ 463:1111–1123

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee A, Abraham J (2017) Efficient management of e-wastes. Int J Environ Sci Technol 14:211–222

    Article  CAS  Google Scholar 

  • Chauhan R, Upadhyay K (2015) Removal of heavy metal from e-waste: a review. Int J Chem Sci 3:15–21

    Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  PubMed  Google Scholar 

  • Cornea N, Véron R, Zimmer A (2017) Clean city politics: an urban political ecology of solid waste in West Bengal, India. Environ Plan 49:728–744

    Article  Google Scholar 

  • Cortes LN, Tanabe EH, Bertuol DA, Dotto GL (2015) Biosorption of gold from computer microprocessor leachate solutions using chitin. Waste Manag 45:272–279

    Article  CAS  PubMed  Google Scholar 

  • CPCB (2014) Central Pollution Control Board, New Delhi, India. List of registered e-waste dismantler/recycler in the country. http://cpcb.nic.in/Ewaste_Registration_List.pdf. Accessed 14 Mar 2016

  • Cucchiella F, D’Adamo I, Koh SL, Rosa P (2015) Recycling of WEEEs: an economic assessment of present and future e-waste streams. Renew Sustain Energ Rev 51:263–272

    Article  Google Scholar 

  • Cui H, Anderson CG (2016) Literature review of hydrometallurgical recycling of printed circuit boards (PCBs). J Adv Chem Eng 6:1–11

    CAS  Google Scholar 

  • Das N, Das D (2013) Recovery of rare earth metals through biosorption: an overview. J Rare Earths 31:933–943

    Article  CAS  Google Scholar 

  • Dasgupta D, Debsarkar A, Hazra T, Bala BK, Gangopadhyay A, Chatterjee D (2017) Scenario of future e-waste generation and recycle-reuse-landfill-based disposal pattern in India: a system dynamics approach. Environ Dev Sustain 19:1473–1487

    Article  Google Scholar 

  • Daum K, Stoler J, Grant RJ (2017) Toward a more sustainable trajectory for e-waste policy: a review of a decade of e-waste research in Accra, Ghana. Int J Environ Res Public Health 14:135

    Article  PubMed Central  Google Scholar 

  • Dave SR, Asha BS, Devayani RT (2018) Microbial technology for metal recovery from e-waste printed circuit boards. J Bacteriol Mycol Open Access 6:241–247

    Google Scholar 

  • Deng X, Wang P (2012) Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Bioresour Technol 121:342–347

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Pilon-Smits EA, Meagher RB, Doty S (2012) Biotechnological approaches for phytoremediation. In Plant biotechnology and agriculture, pp 309–328

    Chapter  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7:2189–2212

    Article  CAS  Google Scholar 

  • Echegaray F, Hansstein FV (2017) Assessing the intention-behavior gap in electronic waste recycling: the case of Brazil. J Clean Prod 142:180–190

    Article  Google Scholar 

  • Erüst C, Akcil A, Gahan CS, Tuncuk A, Deveci H (2013) Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J Chem Technol Biotechnol 88:2115–2132

    Article  CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    Article  CAS  PubMed  Google Scholar 

  • Francis AJ (1998) Biotransformation of uranium and other actinides in radioactive wastes. J Alloys Compd 271:78–84

    Article  Google Scholar 

  • Fujimori T, Takigami H (2014) Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site. Environ Geochem Health 36:159–168

    Article  CAS  PubMed  Google Scholar 

  • Gajendiran A, Abraham J (2015) Mycoadsorption of mercury isolated from mercury contaminated site. Pollut Res J 34:535–538

    CAS  Google Scholar 

  • Gerayeli F, Ghojavand F, Mousavi SM, Yaghmaei S, Amiri F (2013) Screening and optimization of effective parameters in biological extraction of heavy metals from refinery spent catalysts using a thermophilic bacterium. Sep Purif Technol 118:151–161

    Article  CAS  Google Scholar 

  • Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, Kaksonen AH (2018) In a quest for engineering acidophiles for biomining applications: challenges and opportunities. Genes 9:116

    Article  PubMed Central  CAS  Google Scholar 

  • Hansda A, Kumar V (2016) A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol 32:170

    Article  PubMed  CAS  Google Scholar 

  • He X, Chen W, Huang Q (2012) Surface display of monkey metallothionein α tandem repeats and EGFP fusion protein on Pseudomonas putida X4 for biosorption and detection of cadmium. Appl Microbiol Biotechnol 95:1605–1613

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Valix M (2014) Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. J Clean Prod 65:465–472

    Article  CAS  Google Scholar 

  • Ilyas S, Lee JC, Kim BS (2014) Bioremoval of heavy metals from recycling industry electronic waste by a consortium of moderate thermophiles: process development and optimization. J Clean Prod 70:194–202

    Article  CAS  Google Scholar 

  • Isildar A, van de Vossenberg J, Rene ER, van Hullebusch ED, Lens PNL (2015) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57:149–157

    Article  PubMed  CAS  Google Scholar 

  • Jaafar R, Al-Sulami A, Al-Taee A, Aldoghachi F, Napes S (2015) Biosorption and bioaccumulation of some heavy metals by Deinococcus radiodurans isolated from soil in Basra governorate—Iraq. J Biotechnol Biomater 5:2

    Google Scholar 

  • Jerez CA (2017) Biomining of metals: how to access and exploit natural resource sustainably. Microbial Biotechnol 10:1191–1193

    Article  Google Scholar 

  • Johnson DB (2014) Biomining—biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB, Hallberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol 54:201–255

    Article  CAS  Google Scholar 

  • Kaksonen AH, Morris C, Wylie J, Li J, Usher K, Hilario F, du Plessis CA (2017) Continuous flow 70 C archaeal bioreactor for iron oxidation and jarosite precipitation. Hydrometallurgy 168:40–48

    Article  CAS  Google Scholar 

  • Karwowska E, Andrzejewska-Morzuch D, Lebkowska M, Tabernacka A, Wojtkowska M, Telepko A, Konarzewska A (2014) Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J Hazard Mater 264:203–210

    Article  CAS  PubMed  Google Scholar 

  • Kathi S, Khan AB (2011) Phytoremediation approaches to PAH contaminated soil. Indian J Sci Technol 4:56–63

    Article  CAS  Google Scholar 

  • Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches: an overview. Waste Manag 33:1237–1250

    Article  PubMed  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  CAS  PubMed  Google Scholar 

  • Kyere VN, Greve K, Atiemo SM, Ephraim J (2017) Spatial assessment of potential ecological risk of heavy metals in soils from informal e-waste recycling in Ghana. Environ Health Toxicol 32:1–7

    Article  Google Scholar 

  • Lengke MF, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  PubMed  Google Scholar 

  • Lens PNL (2016) Biotechnological applications for electronic waste water processing. Linnaeus Eco-Tech, 103

    Google Scholar 

  • Liang G, Mob Y, Zhou Q (2010) Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme Microb Technol 47:322–326

    Article  CAS  Google Scholar 

  • Liu J, He XX, Lin XR, Chen WC, Zhou QX, Shu WS, Huang LN (2015) Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities. Environ Sci Technol 49:6438–6447

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen X, Shu HY, Lin XR, Zhou QX, Bramryd T, Huang LN (2018) Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China. Environ Pollut 235:171–179

    Article  CAS  PubMed  Google Scholar 

  • Lundgren K, International Labor Office (ILO). The global impact of e-waste: addressing the challenge (2012). Available from http://www.ilo.org/wcmsp5/groups/public/%2D%2D-ed_dialogue/%2D%2D-sector/documents/publication/wcms_196105.pdf

  • Luo Y, Luo XJ, Lin Z, Chen SJ, Liu J, Mai BX, Yang ZY (2009) Polybrominated diphenyl ethers in road and farmland soils from an e-waste recycling region in Southern China: concentrations, source profiles, and potential dispersion and deposition. Sci Total Environ 407:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Madrigal-Arias JE, Argumedo-Delira R, Alarcón A, Mendoza-López M, García-Barradas O, Cruz-Sánchez JS, Jiménez-Fernández M (2015) Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus niger strains. Braz J Microbiol 46:707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makinen J, Bacher J, Kaartinen T, Wahlstrom M, Salminen J (2015) The effect of flotation and parameters for bioleaching of printed circuit boards. Miner Eng 75:26–31

    Article  CAS  Google Scholar 

  • Man M, Naidu R, Wong MH (2013) Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future. Sci Total Environ 463:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process—a review. Appl Biochem Biotechnol 170:1389–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43:1162–1222

    Article  CAS  Google Scholar 

  • Mishra D, Rhee YH (2010) Current research trends of microbiological leaching for metal recovery from industrial wastes. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 2:1289–1292

    Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Nancharaiah YV, Mohan SV, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34:137–155

    Article  CAS  PubMed  Google Scholar 

  • Needhidasan S, Samuel M, Chidambaram R (2014) Electronic waste–an emerging threat to the environment of urban India. J Environ Health Sci Eng 12(1):36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olafisoye OB, Adefioye T, Osibote OA (2013) Heavy metals contamination of water, soil, and plants around an electronic waste dumpsite. Pol J Environ Stud 22:1431–1439

    CAS  Google Scholar 

  • Ongondo FO, Williams ID, Cherrett TJ (2011) How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Manag 31:714–730

    Article  CAS  PubMed  Google Scholar 

  • Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manag 32:979–990

    Article  CAS  PubMed  Google Scholar 

  • Pant D, Giri A, Dhiman V (2018) Bioremediation techniques for E-waste Management. In: Waste bioremediation. Springer, Singapore, pp 105–125

    Chapter  Google Scholar 

  • Patel S, Kasture A (2014) E (electronic) waste management using biological systems-overview. Int J Curr Microbiol Appl Sci 3:495–504

    Google Scholar 

  • Peña-Montenegro TD, Dussán J (2013) Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31. Stand Genomic Sci 9:42–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perkins DN, Drisse MNB, Nxele T, Sly PD (2014) E-waste: a global hazard. Ann Glob Health 80:286–295

    Article  PubMed  Google Scholar 

  • Pramila S, Fulekar MH, Bhawana P (2012) E-waste-A challenge for tomorrow. Res J Recent Sci 1:86–93

    Google Scholar 

  • Priya A, Hait S (2017) Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res 24:6989–7008

    Article  CAS  Google Scholar 

  • Rajesh V, Kumar ASK, Rajesh N (2014) Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chem Eng J 235:176–185

    Article  CAS  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  PubMed  Google Scholar 

  • Rozas EE, Mendes MA, Nascimento CA, Espinosa DC, Oliveira R, Oliveira G, Custodio MR (2017) Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). J Hazard Mater 329:120–130

    Article  CAS  PubMed  Google Scholar 

  • Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Microbial processing of metal sulfides. Springer, Dordrecht, pp 3–33

    Chapter  Google Scholar 

  • Sethurajan M, van Hullebusch ED, Nancharaiah YV (2018) Biotechnology in the management and resource recovery from metal bearing solid wastes: recent advances. J Environ Manag 211:138–153

    Article  CAS  Google Scholar 

  • Sheel A, Pant D (2018) Recovery of gold from electronic waste using chemical assisted microbial biosorption (hybrid) technique. Bioresour Technol 247:1189–1192

    Article  CAS  PubMed  Google Scholar 

  • Shinkuma T, Nguyen TMH (2009) The flow of E-waste material in the Asian region and a reconsideration of international trade policies on e-waste. Environ Impact Assess Rev 29:25–31

    Article  Google Scholar 

  • Suzuki G, Someya M, Matsukami H, Tue NM, Uchida N, Viet PH, Takigami H (2016) Comprehensive evaluation of dioxins and dioxin-like compounds in surface soils and river sediments from e-waste-processing sites in a village in northern Vietnam: heading towards the environmentally sound management of e-waste. Emerg Contam 2:98–108

    Article  Google Scholar 

  • Tabak HH, Lens P, van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides–1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4:115–156

    Article  CAS  Google Scholar 

  • Tang X, Qiao J, Chen C, Chen L, Yu C, Shen C, Chen Y (2013) Bacterial communities of polychlorinated biphenyls polluted soil around an e-waste recycling workshop. Soil Sediment Contam Int J 22:562–573

    Article  CAS  Google Scholar 

  • Tay SB, Natarajan G, bin Abdul Rahim MN, Tan HT, Chung MCM, Ting YP, Yew WS (2013) Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum. Sci Rep 3:2236

    Article  PubMed  PubMed Central  Google Scholar 

  • UNEP (1992) Basel Convention on the control of transboundary movements of hazardous wastes and their disposal. Available from http://www.basel.int/Portals/4/Basel%20Convention/docs/text/BaselConventionText-e.pdf

  • UNU (2015) E-waste World Map: Update to quantitative data and legal texts – STEP. United Nations University (UNU). http://step-initiative.org/index.php/newsdetails/items/e-waste-world-map/

  • Valix M (2017) Bioleaching of electronic waste: milestones and challenges. In: Current developments in biotechnology and bioengineering (pp. 407–442)

    Chapter  Google Scholar 

  • Van Nostrand JD, Wu WM, Wu L, Deng Y, Carley J, Carroll S (2009) GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environ Microbiol 11:2611–2626

    Article  PubMed  CAS  Google Scholar 

  • Varjani SJ, Gnansounou E, Baskar G, Pant D, Zakaria ZA (2018) Introduction to waste bioremediation. In: Waste bioremediation. Springer, Singapore, pp 1–5

    Chapter  Google Scholar 

  • Varshney S, Jain P, Srivastava S (2017) Application of ameliorated wood pulp to recover Cd (II), Pb (II), and Ni (II) from e-waste. J Mater Cycles Waste Manage 19:1446–1456

    Article  CAS  Google Scholar 

  • Villadangos AF, Ordóñez E, Pedre B, Messens J, Gil JA, Mateos LM (2014) Engineered coryneform bacteria as a bio-tool for arsenic remediation. Appl Microbiol Biotechnol 98:10143–10152

    Article  CAS  PubMed  Google Scholar 

  • Volesky B (1990) Removal and recovery of heavy metals by biosorption. CRC Press, Boca Raton

    Google Scholar 

  • Wang Y, Luo C, Li J, Yin H, Li X, Zhang G (2011) Characterization of PBDEs in soils and vegetations near an e-waste recycling site in South China. Environ Pollut 152:2443–2448

    Article  CAS  Google Scholar 

  • Wang S, Zheng Y, Yan W, Chen L, Mahadevan GD, Zhao F (2016) Enhanced bioleaching efficiency of metals from E-wastes driven by biochar. J Hazard Mater 320:393–400

    Article  CAS  PubMed  Google Scholar 

  • Wath SB, Vaidya AN, Dutt PS, Chakrabarti T (2010) A roadmap for development of sustainable e-waste management system in India. Sci Total Environ 409:19–32

    Article  CAS  PubMed  Google Scholar 

  • Wath SB, Dutt PS, Chakrabarti T (2011) E-waste scenario in India, its management and implications. Environ Monit Assess 172:249–262

    Article  PubMed  Google Scholar 

  • Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Böni H (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458

    Article  Google Scholar 

  • Wu Q, Leung JY, Geng X, Chen S, Huang X, Li H, Lu Y (2015) Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci Total Environ 506:217–225

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Dong C, Wu J, Liu X, Wu Y, Chen X, Yu S (2017) Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region. Sci Total Environ 601:57–65

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Liu X, Zhang X, Zhu M, Tan W (2018) Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria. Bioresour Bioprocess 5:10

    Article  Google Scholar 

  • Ye M, Sun M, Wan J, Fang G, Li H, Hu F, Orori Kengara F (2015) Evaluation of enhanced soil washing process with tea saponin in a peanut oil–water solvent system for the extraction of PBDEs/PCBs/PAHs and heavy metals from an electronic waste site followed by vetiver grass phytoremediation. J Chem Technol Biotechnol 90:2027–2035

    Article  CAS  Google Scholar 

  • Zhang WH, Ying-Xin WU, Simonnot MO (2012) Soil contamination due to e-waste disposal and recycling activities: a review with special focus on China. Pedosphere 22:434–455

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kathi, S., Padmavathy, A. (2019). E-waste: Global Scenario, Constituents, and Biological Strategies for Remediation. In: Hashmi, M., Varma, A. (eds) Electronic Waste Pollution. Soil Biology, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-030-26615-8_6

Download citation

Publish with us

Policies and ethics