Skip to main content

Microbial Degradation of Ignitable Liquids

  • Chapter
  • First Online:
Forensic Analysis of Fire Debris and Explosives

Abstract

Ignitable liquids in fire debris samples that are biologically active, such as soil or moldy building materials, can be subject to degradation through microbial metabolism. Unlike weathering, where compounds are lost in a predictable fashion based on volatility, microbial degradation alters ignitable liquids in an unpredictable fashion. The general trends in chemical losses and the factors that affect microbial degradation will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atlas R (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45(1):180–209

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Okoro CC (2008) Biodegradation of hydrocarbons in untreated produce water using pure fungal cultures. AfrJ of Microbiol Res 2(8):217–223

    Google Scholar 

  3. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Tech 45(16):6709–6715. https://doi.org/10.1021/es2013227

    Article  CAS  Google Scholar 

  4. Atlas R, Burtha R (1998) Microbial ecology: fundamentals and applications, 4th edn. Benjamin/Cummings Science Publishing, Menlo Park

    Google Scholar 

  5. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Mol Biol 54(3):305–315. https://doi.org/10.1016/j.forc.2018.03.001

    Article  CAS  Google Scholar 

  6. Mann D, Gresham W (1990) Microbial degradation of gasoline in soil. J For Sci 35(4):913–923. https://doi.org/10.1520/JFS12904J

    Article  Google Scholar 

  7. Kirkbride KP, Yap SM, Andrews S, Pigou PE, Klass G, Dinan AC, Peddie FL (1992) Microbial degradation of petroleum hydrocarbons: implications for arson residue analysis. J For Sci 37(6):1585–1599. https://doi.org/10.1520/JFS13349J

    Article  CAS  Google Scholar 

  8. Chalmers D, Yan S, Cassista A, Hrynchuk R, Sandercock PML (2001) Degradation of gasoline, barbecue starter fluid, and diesel fuel by microbial action in soil. Can Soc For Sci J 34(2):49–62. https://doi.org/10.1080/00085030.2001.10757517

    Article  CAS  Google Scholar 

  9. Turner D, Goodpaster J (2009) The effects of microbial degradation on ignitable liquids. Anal Bioanal Chem 394(1):363–371. https://doi.org/10.1007/s00216-009-2617-z

    Article  CAS  PubMed  Google Scholar 

  10. Turner D, Goodpaster J (2011) The effect of microbial degradation on the chromatographic profiles of tiki torch fuel, lamp oil, and turpentine. J For Sci 56(4):984–987. https://doi.org/10.1111/j.1556-4029.2011.01749.x

    Article  CAS  Google Scholar 

  11. Hutches K (2013) Microbial degradation of ignitable liquids on building materials. For Sci Int 232(1–3):e38–e41. https://doi.org/10.1016/j.forsciint.2013.08.006

    Article  CAS  Google Scholar 

  12. Todar K (2008–2012) Regulation and control of metabolism in bacteria. http://textbookofbacteriology.net/regulation.html. Accessed 8 July 2018

  13. White D (1999) The physiology and biochemistry of prokaryotes. Oxford University Press, New York

    Google Scholar 

  14. Mathews CK, van Holde KE, Ahern K (2000) Biochemistry, 3rd edn. Addison Wesley Longman Inc, San Francisco

    Google Scholar 

  15. Van Hamme J, Singh A, Ward O (2003) Recent advances in petroleum microbiology. MicrobiolMol Biol Rev 67(4):503–549. https://doi.org/10.1128/MMBR.67.4.503-549.2003

    Article  CAS  Google Scholar 

  16. Madigan ME, Martinko J, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  17. Sandercock PML (2017) A survey of fire debris casework in Canada, 2011–2016. Can Soc Forensic Sci J. https://doi.org/10.1080/00085030.2017.1380979

    Article  Google Scholar 

  18. Turner D, Williams M, Sigman M, Goodpaster J (2018) A comprehensive study of the alteration of ignitable liquids by weathering and microbial degradation. J For Sci 63(1):58–65. https://doi.org/10.1111/1556-4029.13527

    Article  CAS  Google Scholar 

  19. Spormann A, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105. https://doi.org/10.1023/A:1011122631799

    Article  CAS  PubMed  Google Scholar 

  20. Kindell J, Williams M, Sigman M (2017) Biodegradation of representative ignitable liquid components in soil. For Chem 6:19–27. https://doi.org/10.1016/j.forc.2017.09.003

    Article  CAS  Google Scholar 

  21. Turner D, Pichtel J, McKillip J, Goodpaster J (2013) Development of a sampling system to stabilize ignitable liquid residues in fire debris. NCJRS Photocopy Services, Rockville. Retrieved from https://www.ncjrs.gov/pdffiles1/nij/grants/242146.pdf

  22. Grishchenkov VG, Tonsend RT, McDonald TJ, Autenrieth RL, Bonner JS, Boronin AM (2000) Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochem 35:889–896. https://doi.org/10.1016/S0032-9592(99)00145-4

    Article  CAS  Google Scholar 

  23. Chakraborty R, Coates J (2004) Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64(4):437–446. https://doi.org/10.1007/s00253-003-1526-x

    Article  CAS  PubMed  Google Scholar 

  24. Hutches K, Hoult J (2018) Practical methods for mitigating microbial degradation of ignitable liquids in soil samples. For Chem 8:95–103. https://doi.org/10.1016/j.forc.2018.03.001

    Article  CAS  Google Scholar 

  25. Turner DA, Goodpaster JV (2014) Preserving ignitable liquid residues on soil using Triclosan as an anti-microbial agent. For Sci Int 239:86–91. https://doi.org/10.1016/j.forsciint.2014.03.011

    Article  CAS  Google Scholar 

  26. Federal Drug Administration, Safety and Effectiveness of Health Care Antiseptics; Topical antimicrobial drug products for over-the-counter human use; 82 Federal Register 60474, 20 Dec 2017

    Google Scholar 

  27. Hogue Cheryl (2018) US FDA halts use of triclosan in health care antiseptics. Chem Eng News 96(1):15–15

    Google Scholar 

  28. Cox CS (1999) United States Patent No. 5942552

    Google Scholar 

  29. Nwaogu LA, Onyeze GOC, Nwabueze RN (2008) Degradation of diesel oil in a polluted soil using Bacillus subtilis. AfrJ Biotechnol 7(12):1939–1943. https://doi.org/10.5897/AJB07.889

    Article  Google Scholar 

  30. Queiroga CL, Nascimento LR, Serra GE (2003) Evaluation of paraffins biodegradation and biosurfactant production by Bacillus subtilis in the presence of crude oil. Braz J Microbiol 34(4). https://doi.org/10.1590/s1517-83822003000400006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hutches, K. (2019). Microbial Degradation of Ignitable Liquids. In: Evans-Nguyen, K., Hutches, K. (eds) Forensic Analysis of Fire Debris and Explosives. Springer, Cham. https://doi.org/10.1007/978-3-030-25834-4_6

Download citation

Publish with us

Policies and ethics