Skip to main content

Future Development

  • Chapter
  • First Online:
Cardiovascular OCT Imaging

Abstract

Engineers and physicists around the world are working on the next generation of intravascular OCT to advance our understanding of coronary atherosclerosis and improve patient management. This chapter discusses the factors that define the performance and capabilities of current intravascular OCT and reviews ongoing development efforts to overcome these limitations. While it is inherently challenging to predict the next technological breakthrough, some of these developments are likely to impact the future of intravascular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein T, Huber R. High-speed OCT light sources and systems [Invited]. Biomed Opt Express. 2017;8(2):828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kawase Y, Suzuki Y, Ikeno F, Yoneyama R, Hoshino K, Ly HQ, et al. Comparison of nonuniform rotational distortion between mechanical IVUS and OCT using a phantom model. Ultrasound Med Biol. 2007;33(1):67–73.

    Article  PubMed  Google Scholar 

  3. Cho HS, Jang S-J, Kim K, Dan-Chin-Yu AV, Shishkov M, Bouma BE, et al. High frame-rate intravascular optical frequency-domain imaging in vivo. Biomed Opt Express. 2014;5(1):223.

    Article  Google Scholar 

  4. Kim TS, Park H-S, Jang S-J, Song JW, Cho HS, Kim S, et al. Single cardiac cycle three-dimensional intracoronary optical coherence tomography. Biomed Opt Express. 2016;7(12):4847.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang T, Wieser W, Springeling G, Beurskens R, Lancee CT, Pfeiffer T, et al. Intravascular optical coherence tomography imaging at 3200 frames per second. Opt Lett. 2013;38(10):1715.

    Article  PubMed  Google Scholar 

  6. Wang T, van Soest G, van der Steen AFW. A micromotor catheter for intravascular optical coherence tomography. Engineering. 2015;1(1):015–7.

    Article  Google Scholar 

  7. Wang T, Pfeiffer T, Regar E, Wieser W, van Beusekom H, Lancee CT, et al. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography. Biomed Opt Express. 2015;6(12):5021.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang T, Pfeiffer T, Regar E, Wieser W, van Beusekom H, Lancee CT, et al. Heartbeat OCT and motion-free 3D in vivo coronary artery microscopy. JACC Cardiovasc Imaging. 2016;9(5):622–3.

    Article  PubMed  Google Scholar 

  9. Drexler W, Morgner U, Kärtner FX, Pitris C, Boppart SA, Li XD, et al. In vivo ultrahigh-resolution optical coherence tomography. Opt Lett. 1999;24(17):1221.

    Article  CAS  PubMed  Google Scholar 

  10. Hartl I, Li XD, Chudoba C, Ghanta RK, Ko TH, Fujimoto JG, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt Lett. 2001;26(9):608–10.

    Article  CAS  PubMed  Google Scholar 

  11. Kassani SH, Villiger M, Uribe-Patarroyo N, Jun C, Khazaeinezhad R, Lippok N, et al. Extended bandwidth wavelength swept laser source for high resolution optical frequency domain imaging. Opt Express. 2017;25(7):8255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ding Z, Ren H, Zhao Y, Nelson JS, Chen Z. High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt Lett. 2002;27(4):243.

    Article  PubMed  Google Scholar 

  13. Leitgeb RA, Villiger M, Bachmann AH, Steinmann L, Lasser T. Extended focus depth for Fourier domain optical coherence microscopy. Opt Lett. 2006;31(16):2450–2.

    Article  CAS  PubMed  Google Scholar 

  14. Ralston TS, Marks DL, Carney PS, Boppart SA. Interferometric synthetic aperture microscopy. Nat Phys. 2007;3(2):129–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu L, Gardecki JA, Nadkarni SK, Toussaint JD, Yagi Y, Bouma BE, et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography. Nat Med. 2011;17(8):1010–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishimiya K, Yin B, Piao Z, Ryu J, Osman H, Leung HM, et al. Micro-optical coherence tomography for endothelial cell visualization in the coronary arteries. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2019.01.021

    PubMed  Google Scholar 

  17. Luo Y, Bo E, Liang H, Wang X, Yu X, Cui D, et al. Imaging cellular structures of atherosclerotic coronary arteries using circumferentially scanning micro-optical coherence tomography fiber probe ex vivo. IEEE Access. 2018;6:62988–94.

    Article  Google Scholar 

  18. Yin B, Hyun C, Gardecki JA, Tearney GJ. Extended depth of focus for coherence-based cellular imaging. Optica. 2017;4(8):959.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ahmad A, Shemonski ND, Adie SG, Kim H-S, Hwu W-MW, Carney PS, et al. Real-time in vivo computed optical interferometric tomography. Nat Phot. 2013;7(6):444–8.

    Article  CAS  Google Scholar 

  20. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies. J Am Coll Cardiol. 2012;59(12):1058–72.

    Article  PubMed  Google Scholar 

  21. Schiele F, Meneveau N, Vuillemenot A, Zhang DD, Gupta S, Mercier M, et al. Impact of intravascular ultrasound guidance in stent deployment on 6- month restenosis rate: a multicenter, randomized study comparing two strategies—with and without intravascular ultrasound guidance. J Am Coll Cardiol. 1998;32:320–8.

    Article  CAS  PubMed  Google Scholar 

  22. Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, et al. American College of Cardiology clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (ivus)31When citing this document, the American College of Cardiology would appreciate the follow. J Am Coll Cardiol. 2001;37(5):1478–92.

    Article  CAS  PubMed  Google Scholar 

  23. Smilowitz NR, Mohananey D, Razzouk L, Weisz G, Slater JN. Impact and trends of intravascular imaging in diagnostic coronary angiography and percutaneous coronary intervention in inpatients in the United States. Catheter Cardiovasc Interv. 2018;92(6):E410–5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sawada T, Shite J, Garcia-Garcia HM, Shinke T, Watanabe S, Otake H, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur Heart J. 2008;29(9):1136–46.

    Article  PubMed  Google Scholar 

  25. Gonzalo N, Garcia-Garcia HM, Regar E, Barlis P, Wentzel J, Onuma Y, et al. In vivo assessment of high-risk coronary plaques at bifurcations with combined intravascular ultrasound and optical coherence tomography. JACC Cardiovasc Imaging. 2009;2(4):473–82.

    Article  PubMed  Google Scholar 

  26. Fujii K, Hao H, Shibuya M, Imanaka T, Fukunaga M, Miki K, et al. Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA. JACC Cardiovasc Imaging. 2015;8(4):451–60.

    Article  PubMed  Google Scholar 

  27. Doradla P, Otsuka K, Nadkarni A, Villiger M, Karanasos A, LJC van Zandvoort, et al. Biomechanical stress profiling of coronary atherosclerosis: identifying a multifactorial metric to evaluate plaque rupture risk. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2019.01.033

  28. Räber L, Heo JH, Radu MD, Garcia-Garcia HM, Stefanini GG, Moschovitis A, et al. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques. EuroIntervention. 2012;8(1):98–108.

    Article  PubMed  Google Scholar 

  29. Bourantas CV, Jaffer FA, Gijsen FJ, Van Soest G, Madden SP, Courtney BK, et al. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology. Eur Heart J. 2017;38:400–12.

    Article  PubMed  Google Scholar 

  30. Yin J, Yang H-C, Li X, Zhang J, Zhou Q, Hu C, et al. Integrated intravascular optical coherence tomography ultrasound imaging system. J Biomed Opt. 2010;15(1):010512.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li J, Ma T, Mohar D, Steward E, Yu M, Piao Z, et al. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo. Sci Rep. 2016;5(1):18406.

    Article  CAS  Google Scholar 

  32. Yang H-C, Yin J, Hu C, Cannata J, Zhou Q, Zhang J, et al. A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(12):2839–43.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li X, Yin J, Hu C, Zhou Q, Shung KK, Chen Z. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Appl Phys Lett. 2010;97(13):133702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yin J, Li X, Jing J, Li J, Mukai D, Mahon S, et al. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J Biomed Opt. 2011;16(6):060505.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li J, Ma T, Jing J, Zhang J, Patel PM, Kirk Shung K, et al. Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display. J Biomed Opt. 2013;18(10):100502.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li BH, Leung ASO, Soong A, Munding CE, Lee H, Thind AS, et al. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis. Catheter Cardiovasc Interv. 2013;81(3):494–507.

    Article  PubMed  Google Scholar 

  37. Li J, Li X, Mohar D, Raney A, Jing J, Zhang J, et al. Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis. JACC Cardiovasc Imaging. 2014;7(1):101–3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sheth TN, Pinilla-Echeverri N, Mehta SR, Courtney BK. First-in-human images of coronary atherosclerosis and coronary stents using a novel hybrid intravascular ultrasound and optical coherence tomographic catheter. JACC Cardiovasc Interv. 2018;11(23):2427–30.

    Article  PubMed  Google Scholar 

  39. Fleming CP, Eckert J, Halpern EF, Gardecki JA, Tearney GJ. Depth resolved detection of lipid using spectroscopic optical coherence tomography. Biomed Opt Express. 2013;4(8):1269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nam HS, Song JW, Jang S-J, Lee JJ, Oh W-Y, Kim JW, et al. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography. J Biomed Opt. 2016;21(7):075004.

    Article  Google Scholar 

  41. Tanaka M, Hirano M, Murashima K, Obi H, Yamaguchi R, Hasegawa T. 17-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel. Opt Express. 2015;23(5):6645.

    Article  CAS  PubMed  Google Scholar 

  42. Adler DC, Huang S-W, Huber R, Fujimoto JG. Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography. Opt Express. 2008;16(7):4376.

    Article  CAS  PubMed  Google Scholar 

  43. Skala MC, Crow MJ, Wax A, Izatt JA. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold Nanospheres. Nano Lett. 2008;8(10):3461–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim S, Lee MW, Kim TS, Song JW, Nam HS, Cho HS, et al. Intracoronary dual-modal optical coherence tomography-near-infrared fluorescence structural–molecular imaging with a clinical dose of indocyanine green for the assessment of high-risk plaques and stent-associated inflammation in a beating coronary artery. Eur Heart J. 2016;37(37):2833–44.

    Article  PubMed  Google Scholar 

  45. Ughi GJ, Wang H, Gerbaud E, Gardecki JA, Fard AM, Hamidi E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging. JACC Cardiovasc Imaging. 2016;9(11):1304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fard AM, Vacas-Jacques P, Hamidi E, Wang H, Carruth RW, Gardecki JA, et al. Optical coherence tomography – near infrared spectroscopy system and catheter for intravascular imaging. Opt Express. 2013;21(25):30849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hee MR, Swanson EA, Fujimoto JG, Huang D. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J Opt Soc Am B. 1992;9(6):903.

    Article  Google Scholar 

  48. de Boer JF, Milner TE, van Gemert MJC, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett. 1997;22(12):934.

    Article  PubMed  Google Scholar 

  49. de Boer JF, Hitzenberger CK, Yasuno Y. Polarization sensitive optical coherence tomography – a review [Invited]. Biomed Opt Express. 2017;8(3):1838.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Giattina SD, Courtney BK, Herz PR, Harman M, Shortkroff S, Stamper DL, et al. Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT). Int J Cardiol. 2006;107(3):400–9.

    Article  PubMed  Google Scholar 

  51. Nadkarni SK, Pierce MC, Park BH, de Boer JF, Whittaker P, Bouma BE, et al. Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J Am Coll Cardiol. 2007;49:1474–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuo W-C, Chou N-K, Chou C, Lai C-M, Huang H-J, Wang S-S, et al. Polarization-sensitive optical coherence tomography for imaging human atherosclerosis. Appl Opt. 2007;46(13):2520.

    Article  PubMed  Google Scholar 

  53. Saxer CE, de Boer JF, Park BH, Zhao Y, Chen Z, Nelson JS. High-speed fiber–based polarization-sensitive optical coherence tomography of in vivo human skin. Opt Lett. 2000;25(18):1355.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang EZ, Vakoc BJ. Polarimetry noise in fiber-based optical coherence tomography instrumentation. Opt Express. 2011;19(18):16830–42.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Villiger M, Zhang EZ, Nadkarni S, Oh W-Y, Bouma BE, Vakoc BJ. Artifacts in polarization-sensitive optical coherence tomography caused by polarization mode dispersion. Opt Lett. 2013;38(6):923.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Villiger M, Zhang EZ, Nadkarni SK, Oh W-Y, Vakoc BJ, Bouma BE. Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging. Opt Express. 2013;21(14):16353–69.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Villiger M, Otsuka K, Karanasos A, Doradla P, Ren J, Lippok N, et al. Coronary plaque microstructure and composition modify optical polarization. JACC Cardiovasc Imaging. 2018;11(11):1666–76.

    Article  PubMed  Google Scholar 

  58. van der Sijde JN, Karanasos A, Villiger M, Bouma BE, Regar E. First-in-man assessment of plaque rupture by polarization-sensitive optical frequency domain imaging in vivo. Eur Heart J. 2016;37(24):1932.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Otsuka K, Villiger M, Bouma B. Intravascular polarimetry in patients with coronary artery disease. JACC Cardiovasc Imaging. Accepted for publication (2019).

    Google Scholar 

  60. Villiger M, Otsuka K, Karanasos A, Doradla P, Ren J, Lippok N, et al. Repeatability assessment of intravascular polarimetry in patients. IEEE Trans Med Imaging. 2018;37:1618–25.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Villiger M, Braaf B, Lippok N, Otsuka K, Nadkarni SK, Bouma BE. Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography. Optica. 2018;5(10):1329–37.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Räber L, Mintz GS, Koskinas KC, Johnson TW, Holm NR, Onuma Y, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2018;39:3281–300.

    Article  PubMed  Google Scholar 

  63. Manfrini O, Mont E, Leone O, Arbustini E, Eusebi V, Virmani R, et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol. 2006;98(2):156–9.

    Article  PubMed  Google Scholar 

  64. Kim S-J, Lee H, Kato K, Yonetsu T, Xing L, Zhang S, et al. Reproducibility of in vivo measurements for fibrous cap thickness and lipid arc by OCT. JACC Cardiovasc Imaging. 2012;5(10):1072–4.

    Article  PubMed  Google Scholar 

  65. Kini AS, Vengrenyuk Y, Yoshimura T, Matsumura M, Pena J, Baber U, et al. Fibrous cap thickness by optical coherence tomography in vivo. J Am Coll Cardiol. 2017;69(6):644–57.

    Article  PubMed  Google Scholar 

  66. Sihan K, Botha C, Post F, de Winter S, Gonzalo N, Regar E, et al. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography. Catheter Cardiovasc Interv. 2009;74(7):1058–65.

    Article  PubMed  Google Scholar 

  67. Tsantis S, Kagadis GC, Katsanos K, Karnabatidis D, Bourantas G, Nikiforidis GC. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography. Med Phys. 2011;39(1):503–13.

    Article  Google Scholar 

  68. Ughi GJ, Adriaenssens T, Onsea K, Kayaert P, Dubois C, Sinnaeve P, et al. Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage. Int J Cardiovasc Imaging. 2012;28(2):229–41.

    Article  CAS  PubMed  Google Scholar 

  69. Ughi GJ, Adriaenssens T, Desmet W, D’hooge J. Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo. Biomed Opt Express. 2012;3:3291–303.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wang Z, Kyono H, Bezerra HG, Wang H, Gargesha M, Alraies C, et al. Semiautomatic segmentation and quantification of calcified plaques in intracoronary optical coherence tomography images. J Biomed Opt. 2010;15(6):061711.

    Article  PubMed  Google Scholar 

  71. van der Meer FJ, Faber DJ, Sassoon DMB, Aalders MC, Pasterkamp G, van Leeuwen TG. Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography. IEEE Trans Med Imaging. 2005;24(10):1369–76.

    Article  PubMed  Google Scholar 

  72. Xu C, Schmitt JM, Carlier SG, Virmani R. Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography. J Biomed Opt. 2008;13(3):034003.

    Article  PubMed  Google Scholar 

  73. van Soest G, Goderie T, Regar E, Koljenović S, van Leenders GLJH, Gonzalo N, et al. Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging. J Biomed Opt. 2010;15(1):011105.

    Article  PubMed  Google Scholar 

  74. Gnanadesigan M, Kameyama T, Karanasos A, van Ditzhuijzen N, van der Sijde J, van Geuns R-J, et al. Automated characterisation of lipid core plaques in vivo by quantitative optical coherence tomography tissue type imaging. EuroIntervention. 2016;12(12):1490–7.

    Article  PubMed  Google Scholar 

  75. Gnanadesigan M, Hussain AS, White S, Scoltock S, Baumbach A, van der Steen AFW, et al. Optical coherence tomography attenuation imaging for lipid core detection: an ex-vivo validation study. Int J Cardiovasc Imaging. 2017;33(1):5–11.

    Article  PubMed  Google Scholar 

  76. Ughi GJ, Adriaenssens T, Sinnaeve P, Desmet W, D’hooge J. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images. Biomed Opt Express. 2013;4(7):1014.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gargesha M, Shalev R, Prabhu D, Tanaka K, Rollins AM, Costa M, et al. Parameter estimation of atherosclerotic tissue optical properties from three-dimensional intravascular optical coherence tomography. J Med Imaging. 2015;2(1):016001.

    Article  Google Scholar 

  78. Liu S, Sotomi Y, Eggermont J, Nakazawa G, Torii S, Ijichi T, et al. Tissue characterization with depth-resolved attenuation coefficient and backscatter term in intravascular optical coherence tomography images. J Biomed Opt. 2017;22(9):1–16.

    PubMed  Google Scholar 

  79. Rico-Jimenez JJ, Campos-Delgado DU, Villiger M, Otsuka K, Bouma BE, Jo JA. Automatic classification of atherosclerotic plaques imaged with intravascular OCT. Biomed Opt Express. 2016;7(10):4069.

    Article  PubMed  PubMed Central  Google Scholar 

  80. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  PubMed  Google Scholar 

  81. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Henglin M, Stein G, Hushcha PV, Snoek J, Wiltschko AB, Cheng S. Machine learning approaches in cardiovascular imaging. Circ Cardiovasc Imaging. 2017;10(10):e005614.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Krittanawong C, Zhang HJ, Wang Z, Aydar M, Kitai T. Artificial Intelligence in Precision Cardiovascular Medicine. J Am Coll Cardiol. 2017;69(21):2657–64.

    Article  PubMed  Google Scholar 

  84. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–50.

    Article  PubMed  CAS  Google Scholar 

  85. Yong YL, Tan LK, McLaughlin RA, Chee KH, Liew YM. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography. J Biomed Opt. 2017;22(12):1.

    Article  PubMed  Google Scholar 

  86. Gessert N, Lutz M, Heyder M, Latus S, Leistner DM, Abdelwahed YS, et al. Automatic plaque detection in IVOCT pullbacks using convolutional neural networks. IEEE Trans Med Imaging. 2019;38(2):426–34.

    Article  PubMed  Google Scholar 

  87. Nam HS, Kim C-S, Lee JJ, Song JW, Kim JW, Yoo H. Automated detection of vessel lumen and stent struts in intravascular optical coherence tomography to evaluate stent apposition and neointimal coverage. Med Phys. 2016;43(4):1662–75.

    Article  PubMed  Google Scholar 

  88. Pijls NHJ, van Schaardenburgh P, Manoharan G, Boersma E, Bech J-W, van’t Veer M, et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J Am Coll Cardiol. 2007;49(21):2105–11.

    Article  PubMed  Google Scholar 

  89. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, Van’t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.

    Article  CAS  PubMed  Google Scholar 

  90. Pijls NHJ, de Bruyne B, Peels K, van der Voort PH, Bonnier HJRM, Bartunek J, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery Stenoses. N Engl J Med. 1996;334(26):1703–8.

    Article  CAS  PubMed  Google Scholar 

  91. Yonetsu T, Bouma BE, Kato K, Fujimoto JG, Jang I-K. Optical coherence tomography. Circ J. 2013;77(8):1933–40.

    Article  PubMed  Google Scholar 

  92. Yong ASC, Ng ACC, Brieger D, Lowe HC, Ng MKC, Kritharides L. Three-dimensional and two-dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. Eur Heart J. 2011;32(3):345–53.

    Article  PubMed  Google Scholar 

  93. Saad M, Toelg R, Khattab AA, Kassner G, Abdel-Wahab M, Richardt G. Determination of haemodynamic significance of intermediate coronary lesions using three-dimensional coronary reconstruction. EuroIntervention. 2009;5(5):573–9.

    Article  PubMed  Google Scholar 

  94. Usui E, Yonetsu T, Kanaji Y, Hoshino M, Yamaguchi M, Hada M, et al. Efficacy of optical coherence tomography-derived morphometric assessment in predicting the physiological significance of coronary stenosis: head-to-head comparison with intravascular ultrasound. EuroIntervention. 2018;13(18):2210–8.

    Article  Google Scholar 

  95. Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodriguez V, Jimenez-Quevedo P, et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol. 2012;59(12):1080–9.

    Article  PubMed  Google Scholar 

  96. Shiono Y, Kitabata H, Kubo T, Masuno T, Ohta S, Ozaki Y, et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve. Circ J. 2012;76(9):2218–25.

    Article  PubMed  Google Scholar 

  97. Pyxaras SA, Tu S, Barbato E, Barbati G, Di Serafino L, De Vroey F, et al. Quantitative angiography and optical coherence tomography for the functional assessment of nonobstructive coronary stenoses: comparison with fractional flow reserve. Am Heart J. 2013;166(6):1010–1018.e1.

    Article  PubMed  Google Scholar 

  98. Burzotta F, Nerla R, Hill J, Paraggio L, Leone AM, Byrne J, et al. Correlation between frequency-domain optical coherence tomography and fractional flow reserve in angiographically-intermediate coronary lesions. Int J Cardiol. 2018;253:55–60.

    Article  PubMed  Google Scholar 

  99. Usui E, Yonetsu T, Kanaji Y, Hoshino M, Yamaguchi M, Hada M, et al. Relationship between optical coherence tomography-derived morphological criteria and functional relevance as determined by fractional flow reserve. J Cardiol. 2018;71(4):359–66.

    Article  PubMed  Google Scholar 

  100. Schmitt JM, Petroff C. Method of determining pressure in a vessel as measured by an optical pressure transducer in an optical coherence tomography system. 2014. US patent USOO8676299B2.

    Google Scholar 

  101. Ha J, Kim J-S, Lim J, Kim G, Lee S, Lee JS, et al. Assessing computational fractional flow reserve from optical coherence tomography in patients with intermediate coronary stenosis in the left anterior descending artery. Circ Cardiovasc Interv. 2016;9(8):1–8.

    Article  Google Scholar 

  102. Jang S-J, Ahn J-M, Kim B, Gu J-M, Sung HJ, Park S-J, et al. Comparison of accuracy of one-use methods for calculating fractional flow reserve by intravascular optical coherence tomography to that determined by the pressure-wire method. Am J Cardiol. 2017;120(11):1920–5.

    Article  PubMed  Google Scholar 

  103. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease: role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62(18):1639–53.

    Article  PubMed  Google Scholar 

  104. Johnson NP, Gould KL, Di Carli MF, Taqueti VR. Invasive FFR and noninvasive CFR in the evaluation of ischemia what is the future? J Am Coll Cardiol. 2016;67(23):2772–88.

    Article  PubMed  Google Scholar 

  105. Kitabata H, Kubo T, Ishibashi K, Komukai K, Tanimoto T, Ino Y, et al. Prognostic value of microvascular resistance index immediately after primary percutaneous coronary intervention on left ventricular remodeling in patients with reperfused anterior acute ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2013;6(10):1046–54.

    Article  PubMed  Google Scholar 

  106. Hennigan B, Layland J, Fearon WF, Oldroyd KG, Hennigan B. Fractional flow reserve and the index of microvascular resistance in patients with acute coronary syndromes. EuroIntervention. 2014;10:T55–63.

    Article  PubMed  Google Scholar 

  107. Fearon WF, Farouque HMO, Balsam LB, Cooke DT, Robbins RC, Fitzgerald PJ, et al. Comparison of coronary thermodilution and Doppler velocity for assessing coronary flow reserve. Circulation. 2003;108(18):2198–200.

    Article  PubMed  Google Scholar 

  108. De Bruyne B, Pijls NHJ, Smith L, Wievegg M, Heyndrickx GR. Coronary Thermodilution to assess flow reserve experimental validation. Circulation. 2001;104(17):2003–6.

    Article  PubMed  Google Scholar 

  109. Pijls NHJ, De Bruyne B, Smith L, Aarnoudse W, Barbato E, Bartunek J, et al. Coronary thermodilution to assess flow reserve. Circulation. 2002;105(21):2482–6.

    Article  PubMed  Google Scholar 

  110. Neishi Y, Akasaka T, Koyama Y, Akiyama M, Watanabe N, Kamiyama N, et al. Measurement of coronary flow reserve by pressure/temperature sensor guide wire-based thermodilution in experimental models. J Cardiol. 2002;40(6):249–57.

    PubMed  Google Scholar 

  111. Sun C, Nolte F, Cheng KHY, Vuong B, Lee KKC, Standish BA, et al. In vivo feasibility of endovascular Doppler optical coherence tomography. Biomed Opt Express. 2012;3(10):2600–10.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sun C, Nolte F, Vuong B, Cheng KHY, Lee KKC, Standish BA, et al. Blood flow velocity measurement by endovascular Doppler optical coherence tomography. In: Photonic therapeutics and diagnostics IX, vol. 8565. Bellingham: International Society for Optics and Photonics; 2013. p. 85654S–6.

    Chapter  Google Scholar 

  113. Kinlay S, Grewal J, Manuelin D, Fang JC, Selwyn AP, Bittl JA, et al. Coronary flow velocity and disturbed flow predict adverse clinical outcome after coronary angioplasty. Arterioscler Thromb Vasc Biol. 2002;22(8):1334–40.

    Article  CAS  PubMed  Google Scholar 

  114. Varghese SS, Frankel SH, Fischer PF. Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech. 2007;582:253.

    Article  Google Scholar 

  115. Varghese SS, Frankel SH, Fischer PF. Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow. J Fluid Mech. 2007;582:281.

    Article  Google Scholar 

  116. Huo Y, Wischgoll T, Kassab GS. Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am J Physiol Heart Circ Physiol. 2007;293(5):H2959–70.

    Article  CAS  PubMed  Google Scholar 

  117. Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91(1):327–87.

    Article  PubMed  Google Scholar 

  118. Li W, van der Steen AFW, Lancée CT, Céspedes I, Bom N. Blood flow imaging and volume flow quantitation with intravascular ultrasound. Ultrasound Med Biol. 1998;24(2):203–14.

    Article  CAS  PubMed  Google Scholar 

  119. Lupotti FA, Mastik F, Carlier SG, de Korte CL, van der Giessen WJ, Serruys PW, et al. Quantitative IVUS blood flow: validation in vitro, in animals and in patients. Ultrasound Med Biol. 2003;29(4):507–15.

    Article  PubMed  Google Scholar 

  120. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.

    Article  PubMed  Google Scholar 

  121. Uribe-Patarroyo N, Villiger M, Bouma BE. Quantitative technique for robust and noise-tolerant speed measurements based on speckle decorrelation in optical coherence tomography. Opt Express. 2014;22(20):24411.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Uribe-Patarroyo N, Bouma BE. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating. Phys Rev E. 2016;94(2):22604.

    Article  CAS  Google Scholar 

  123. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–71.

    Article  CAS  PubMed  Google Scholar 

  124. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.

    Article  CAS  PubMed  Google Scholar 

  125. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  126. Larin KV, Sampson DD. Optical coherence elastography – OCT at work in tissue biomechanics [Invited]. Biomed Opt Express. 2017;8(2):1172.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Wang T, Pfeiffer T, Wu M, Wieser W, Amenta G, Draxinger W, et al. Thermo-elastic optical coherence tomography. Opt Lett. 2017;42(17):3466.

    Article  PubMed  Google Scholar 

  128. Loree HM, Kamm RD, Stringfellow RG, Lee RT. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res. 1992;71:580–858.

    Article  Google Scholar 

  129. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation. 1993;87:1179–87.

    Article  CAS  PubMed  Google Scholar 

  130. Ohayon J, Finet G, Gharib AM, Herzka DA, Tracqui P, Heroux J, et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Circ Physiol. 2008;295:H717–27.

    Article  CAS  Google Scholar 

  131. Brown AJ, Teng Z, Calvert PA, Rajani NK, Hennessy O, Nerlekar N, et al. Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging. Circ Cardiovasc Imaging. 2016;9(6):1–9.

    Article  Google Scholar 

  132. Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NEJ, et al. Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging. 2017;10(12):1472–83.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett E. Bouma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Villiger, M., Ren, J., Uribe-Patarroyo, N., Bouma, B.E. (2020). Future Development. In: Jang, IK. (eds) Cardiovascular OCT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-25711-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25711-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25710-1

  • Online ISBN: 978-3-030-25711-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics