Skip to main content

Immunotherapy in Hodgkin Lymphoma and Other CD30+ Lymphomas

  • Chapter
  • First Online:
  • 480 Accesses

Abstract

CD30 is a member of the tumor necrosis factor receptor superfamily and is a transmembrane receptor which was initially observed to be the target of the Ki-1 antibody binding to Reed-Sternberg cells in Hodgkin lymphoma (Stein et al., Blood 66(4):848–858, 1985). Since it has high expression within Hodgkin lymphoma (HL) and anaplastic large cell lymphoma (ALCL), variable expression in other non-Hodgkin lymphoma subgroups, and limited expression in nonmalignant tissues, CD30 has become the focus for innovative therapeutic advances (Horie, Semin Immunol 10(6):457–470, 1998). This chapter will focus on first reviewing the standard of care for CD30+ lymphomas and then describing the recent developments in CD30-directed immunotherapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stein H, Mason D, Gerdes J, et al. The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985;66(4):848–58.

    Article  CAS  PubMed  Google Scholar 

  2. Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10(6):457–70.

    Article  CAS  PubMed  Google Scholar 

  3. Hodgkin Lymphoma [Internet]. National Cancer Institute, Bethesda. Available from: https://seer.cancer.gov/statfacts/html/hodg.html.

  4. Grufferman S, Cole P, Smith PG, Lukes RJ. Hodgkin’s disease in siblings. N Engl J Med. 1977;296(5):248–50.

    Article  CAS  PubMed  Google Scholar 

  5. Cozen W, Katz J, Mack TM. Risk patterns of Hodgkin’s disease in Los Angeles vary by cell type. Cancer Epidemiol Biomark Prev. 1992;1(4):261.

    CAS  Google Scholar 

  6. Swerdlow SH, Campo E, Harris NL, Jaffe ES, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. In: Press I, editor. . Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  7. Gopas J, Stern E, Zurgil U, Ozer J, et al. Reed-Sternberg cells in Hodgkin’s lymphoma present features of cellular senescence. Cell Death Dis. 2016;7(11):e2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schmitz R, Stanelle J, Hansmann ML, Küppers R. Pathogenesis of classical and lymphocyte–predominant Hodgkin lymphoma. Annu Rev Pathol. 2009;4:151–74.

    Article  CAS  PubMed  Google Scholar 

  9. Marafioti T, Hummel M, Foss HD, Laumen H, et al. Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood. 2000;95(4):1443–50.

    Article  CAS  PubMed  Google Scholar 

  10. Stein H, Marafioti T, Foss HD, Laumen H, et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood. 2001;97(2):496–501.

    Article  CAS  PubMed  Google Scholar 

  11. Hjalgrim H, Engels E. Infectious aetiology of Hodgkin and non-Hodgkin lymphomas: a review of the epidemiological evidence. J Intern Med. 2008;264(6):537–48.

    Article  CAS  PubMed  Google Scholar 

  12. Anagnostopoulos I, Herbst H, Niedobitek G, Stein H. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1- positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood. 1989;74(2):810–6.

    Article  CAS  PubMed  Google Scholar 

  13. Bechtel D, Kurth J, Unkel C, Küppers R. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood. 2005;106(13):4345–50.

    Article  CAS  PubMed  Google Scholar 

  14. Kilger E, Kieser A, Baumann M, Hammerschmidt W. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 1998;17(6):1700–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Joos S, Küpper M, Ohl S, von Bonin F, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60(3):549–52.

    CAS  PubMed  Google Scholar 

  16. Martin-Subero JI, Gesk S, Harder L, Sonoki T, et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood. 2002;99(4):1474–7.

    Article  CAS  PubMed  Google Scholar 

  17. Bargou RC, Emmerich F, Krappman D, Bommert K, et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997;100(12):2961–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Otto C, Giefing M, Massow A, Vater I, et al. Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol. 2012;157(6):702–8.

    Article  CAS  PubMed  Google Scholar 

  19. Schmitz R, Hansmann M, Bohle V, Martin-Subero JI, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206(5):981–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weniger MA, Melzner I, Menz CK, Wegener S, et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006;25(18):2679–84.

    Article  CAS  PubMed  Google Scholar 

  21. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baitsch L, Fuertes-Marraco S, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol. 2012;33(7):364–72.

    Article  CAS  PubMed  Google Scholar 

  23. Ishida T, Ishii T, Inagaki A, et al. Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res. 2006;66:5716–22.

    Article  CAS  PubMed  Google Scholar 

  24. van den Berg A, Visser L, Poppema S. High expression of the CC chemokine TARC in Reed-Sternberg cells: a possible explanation for the characteristic T-cell infiltrate in Hodgkin’s lymphoma. Am J Pathol. 1999;154:1685–91.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Green MR, Monti S, Rodig SJ, Juszczynski P, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roemer MG, Advani R, Ligon AH, Natkunam Y, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carey CD, Gusenleitner D, Lipschitz M, Roemer MGM, et al. Topological analysis reveals a PD-L1 associated immuno-pretective niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood. 2017;130:2420–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ansell SM, Lesokhin A, Borrello I, Halwani A, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  CAS  PubMed  Google Scholar 

  29. Younes A, Santoro A, Shipp M, Zinzani PL, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen R, Zinzani P, Fanale MA, Armand P, et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol. 2017;35(19):2125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atkinson K, Austin D, McElwain TJ, Peckham MJ. Alcohol pain in Hodgkin’s disease. Cancer. 1976;37:895–9.

    Article  CAS  PubMed  Google Scholar 

  32. El-Galaly TC, d’Amore F, Mylam KJ, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naïve patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36):4508–14.

    Article  PubMed  Google Scholar 

  33. Cheson BD. Role of functional imaging in the management of lymphoma. J Clin Oncol. 2011;29(19):1844–54.

    Article  PubMed  Google Scholar 

  34. Cheson BD, Fisher R, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hoppe RT, Advani R, Ai WZ, et al. Hodgkin lymphoma, version 2.2015. J Natl Compr Canc Netw. 2015;13(5):554–86.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tubiana M, Henry-Amar M, Carde P, et al. Toward comprehensive management tailored to prognostic factors of patients with clinical stages I and II in Hodgkin’s disease: the EORTC Lymphoma Group controlled clinical trials; 1964–1987. Blood. 1989;73(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  37. Panel NCCNA. Hodgkin lymphoma: NCCN. 2017. Available from: https://www.nccn.org/professionals/physician_gls/pdf/hodgkins.pdf.

  38. Hasenclever D, Diehl V. A prognostic score for advanced Hodgkin’s disease. International prognostic factors project on advanced Hodgkin’s disease. N Engl J Med. 1998;339(21):1506–14.

    Article  CAS  PubMed  Google Scholar 

  39. Gallamini A, Hutchings M, Rigacci L, et al. Early interim 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin’s lymphoma: a report front a joint Italian-Danish study. J Clin Oncol. 2007;25(24):3746–52.

    Article  CAS  PubMed  Google Scholar 

  40. Press OW, Li H, Schoder H, Strauss DJ, et al. US intergroup trial of response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluorodeoxyglucose–positron emission tomography imaging: Southwest Oncology Group S0816. J Clin Oncol. 2016;34(17):2020–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonnadonna G, Zucali R, Monfardini S, de Lena M, Uslenghi C. Combination chemotherapy of Hodgkin’s disease with adriamycin, bleomycin, vinblastine, and imidazole carboxamide versus MOPP. Cancer. 1975;36(1):252–9.

    Article  Google Scholar 

  42. Diehl V, Franklin J, Pfreundschuh M, Lathan B, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95.

    Article  CAS  PubMed  Google Scholar 

  43. Ballova V, Rüffer J, Haverkamp H, Pfistner B, et al. A prospectively randomized trial carried out by the German Hodgkin Study Group (GHSG) for elderly patients with advanced Hodgkin’s disease comparing BEACOPP baseline and COPP-ABVD (GHSG HD9 study). Ann Oncol. 2005;16(1):124–31.

    Article  CAS  PubMed  Google Scholar 

  44. Engert A, Diehl V, Franklin J, Lohri A, et al. Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin’s lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol. 2009;27(27):4548–54.

    Article  PubMed  Google Scholar 

  45. Sieniawski M, Reineke T, Nogova L, Josting A, et al. Fertility in male patients with advanced Hodgkin lymphoma treated with BEACOPP: a report of the German Hodgkin Study Group (GHSG). Blood. 2008;111(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  46. Armitage JO. Early stage Hodgkin’s lymphoma. N Engl J Med. 2008;363(7):653–62.

    Article  Google Scholar 

  47. Brenner H, Gondos A, Pulte D. Ongoing improvement in long-term survival of patients with Hodgkin disease at all ages and recent catch-up of older patients. Blood. 2008;111(6):2977–83.

    Article  CAS  PubMed  Google Scholar 

  48. Engert A, Plütschow A, Eich HT, Lohri A, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):640–52.

    Article  CAS  PubMed  Google Scholar 

  49. Meyer RM, Gospodarowicz M, Connors JM, Pearcey RG, et al. ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N Engl J Med. 2012;366(5):399–408.

    Article  CAS  PubMed  Google Scholar 

  50. Eich HT, Diehl V, Görgen H, Pabst T, et al. Intensified chemotherapy and dose-reduced involved-field radiotherapy in patients with early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD11 trial. J Clin Oncol. 2010;28(27):4199–206.

    Article  PubMed  Google Scholar 

  51. Viviani S, Zinzani P, Rambaldi A, Brusamolino E, et al. ABVD versus BEACOPP for Hodgkin’s lymphoma when high-dose salvage is planned. N Engl J Med. 2011;365(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  52. Carde P, Karrasch M, Fortpied C, et al. Eight cycles of ABVD versus four cycles of BEACOPPescalated plus four cycles of BEACOPPbaseline in stage III to IV, international prognostic score >/= 3, high-risk Hodgkin lymphoma: first results of the phase III EORTC 20012 intergroup trial. J Clin Oncol. 2016;34(17):2028–36.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson P, Federico M, Kirkwood A, Fosså A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Moskowitz CH, Nimer S, Zelenetz AD, Trippett T, et al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood. 2001;97(3):616–23.

    Article  CAS  PubMed  Google Scholar 

  55. Bartlett NL, Niedzwiecki D, Johnson JL, Friedberg JW, et al. Gemcitabine, vinorelbine, and pegylated liposomal doxorubicin (GVD), a salvage regimen in relapsed Hodgkin’s lymphoma: CALGB 59804. Ann Oncol. 2007;18(6):1071–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kuruvilla J, Nagy T, Pintilie M, Tsang R, et al. Similar response rates and superior early progression-free survival with gemcitabine, dexamethasone, and cisplatin salvage therapy compared with carmustine, etoposide, cytarabine, and melphalan salvage therapy prior to autologous stem cell transplantation for recurrent or refractory Hodgkin lymphoma. Cancer. 2006;106(2):353–60.

    Article  CAS  PubMed  Google Scholar 

  57. Santoro A, Mazza R, Pulsoni A, Re A, et al. Bendamustine in combination with gemcitabine and vinorelbine is an effective regimen as induction chemotherapy before autologous stem-cell transplantation for relapsed or refractory Hodgkin lymphoma: final results of a multicenter phase II study. J Clin Oncol. 2016;34(27):3293–9.

    Article  CAS  PubMed  Google Scholar 

  58. Brandwein JM, Callum J, Sutcliffe SB, Scott JG, et al. Evaluation of cytoreductive therapy prior to high dose treatment with autologous bone marrow transplantation in relapsed and refractory Hodgkin’s disease. Bone Marrow Transplant. 1990;5(2):99.

    CAS  PubMed  Google Scholar 

  59. Schmitz N, Pfistner B, Sextro M, Sieber M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet Oncol. 2002;359(9323):2065–71.

    Article  CAS  Google Scholar 

  60. Linch DC, Winfield D, Goldstone AH, McMillan A, et al. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet Oncol. 1993;341(8852):1051–4.

    Article  CAS  Google Scholar 

  61. Moskowitz CH, Matasar M, Zelenetz AD, Nimer SD, et al. Normalization of pre-ASCT, FDG-PET imaging with second-line, non-cross-resistant, chemotherapy programs improves event-free survival in patients with Hodgkin lymphoma. Blood. 2012;119(7):1665–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Falini B, Pileri S, Zinzani PL, et al. ALK+ lymphoma: clinico-pathological findings and outcome. Blood. 1999;93(8):2697–706.

    CAS  PubMed  Google Scholar 

  63. Surveillance E, and End Results Program. SEER cancer statistics factsheets: anaplastic large cell lymphoma. Bethesda: National Cancer Institute; 2015.

    Google Scholar 

  64. Gascoyne RD, Aoun P, Wu D, Chhanabhai M, Skinnider BF, Greiner TC, et al. Prognostic significance of anaplastic lymphoma kinase (ALK) protein expression in adults with anaplastic large cell lymphoma. Blood. 1999;93(11):3913–21.

    Article  CAS  PubMed  Google Scholar 

  65. Savage KJ, Harris NL, Vose JM, Ullrich F, Jaffe ES, Connors JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12):5496–504.

    Article  CAS  PubMed  Google Scholar 

  66. Sibon D, Fournier M, Brière J, Lamant L, et al. Long-term outcome of adults with systemic anaplastic large-cell lymphoma treated within the Groupe d’Etude des Lymphomes de l’Adulte trials. J Clin Oncol. 2012;30(32):3939–46.

    Article  PubMed  Google Scholar 

  67. Fisher RI, Gaynor E, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med. 1993;328(14):1002–6.

    Article  CAS  PubMed  Google Scholar 

  68. Schmitz N, Trümper L, Ziepert M, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood. 2012;116(18):3418–25.

    Article  CAS  Google Scholar 

  69. Slack GW, Steidl C, Sehn LH, et al. CD30 expression in de novo diffuse large B-cell lymphoma: a population-based study from British Columbia. Br J Haematol. 2014;167(5):608–17.

    Article  CAS  PubMed  Google Scholar 

  70. Sabattini E, Pizzi M, Tabanelli V, et al. CD30 expression in peripheral T-cell lymphomas. Haematologica. 2013;98(8):81–2.

    Article  Google Scholar 

  71. Ansell SM, Horwitz S, Engert A, et al. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. J Clin Oncol. 2007;25(19):2764–9.

    Article  CAS  PubMed  Google Scholar 

  72. Younes A, Bartlett N, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.

    Article  CAS  PubMed  Google Scholar 

  73. Younes A, Gopal A, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol. 2012;30(18):2183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gopal AK, Chen R, Smith SE, et al. Durable remissions in a pivotal phase 2 study of brentuximab vedotin in relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(8):1236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Moskowitz CH, Nademanee A, Masszi T, et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2015;385(9980):1853–62.

    Article  CAS  Google Scholar 

  76. Administration UFaD. Brentuximab vedotin information. In: Administration USFaD, editor. Silver Spring: US FDA; 2015.

    Google Scholar 

  77. O’Connor OA, Lue J, Sawas A, Amengual JE, et al. Brentuximab vedotin plus bendamustine in relapsed or refractory Hodgkin’s lymphoma: an international, multicentre, single-arm, phase 1–2 trial. Lancet Oncol. 2018;19(2):257–66.

    Article  PubMed  Google Scholar 

  78. LaCasce AS, Bociek RG, Sawas A, Caimi P, Agura E, Matous J, et al. Brentuximab vedotin plus bendamustine: a highly active first salvage regimen for relapsed or refractory Hodgkin lymphoma. Blood. 2018;132(1):40–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Younes A, Connors J, Park SI, Fanale M, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013;14(13):1348–56.

    Article  CAS  PubMed  Google Scholar 

  80. Connors JM, Jurczak W, Straus DJ, Ansell SM, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med. 2018;378(4):331–44.

    Article  CAS  PubMed  Google Scholar 

  81. Fanale MA, Horwitz SM, Forero-Torres A, Bartlett NL, Advani RH, Pro B, et al. Five-year outcomes for frontline brentuximab vedotin with CHP for CD30-expressing peripheral T-cell lymphomas. Blood. 2018;131(19):2120–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Horwitz S, O’Connor OA, Pro B, Illidge T, Fanale M, Advani R, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): a global, double-blind, randomised, phase 3 trial. Lancet (London, England). 2019;393(10168):229–40.

    Article  CAS  Google Scholar 

  83. Dotti G, Gottschalk S, Savoldo B, Brenner M. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107–26.

    Article  CAS  PubMed  Google Scholar 

  84. Kochenderfer JN, Feldman S, Zhao Y, Xu H, et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother. 2009;32(7):689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van der Stegen SJ, Hamieh M, Sadelain M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov. 2015;14(7):499–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Till BG, Jensen M, Wang J, Chen EY, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Transplantation. 2010;16(9):1245–56.

    CAS  Google Scholar 

  88. Geldres C, Savoldo B, Dotti G. Chimeric antigen receptor-redirected T cells return to the bench. Semin Immunol. 2016;28(1):3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kochenderfer JN, Dudley M, Feldman SA, Wilson WH, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brentjens RJ, Riviere I, Park JH, Davila ML, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kalos M, Levine B, Porter DL, Katz S, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brudno JN, Kochenderfer J. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  93. Gattinoni L, Finkelstein S, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7):907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Savoldo B, Rooney C, Di Stasi A, Abken H, et al. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30zeta artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood. 2007;110(7):2620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ramos CA, Ballard B, Zhang H, Dakhova O, et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest. 2017;127(9):3462–71.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang CM, Wu Z, Wang Y, Guo YL, et al. Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res. 2017;23(5):1156–66.

    Article  CAS  PubMed  Google Scholar 

  97. Di Stasi A, De Angelis B, Rooney CM, Zhang L, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113(25):6392–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baumeister SH, Freeman G, Dranoff G, Sharpe AH. Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 2016;34:539–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuveer Ranganathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranganathan, R., Shea, T.C. (2020). Immunotherapy in Hodgkin Lymphoma and Other CD30+ Lymphomas. In: Dittus, C. (eds) Novel Therapeutics for Rare Lymphomas. Springer, Cham. https://doi.org/10.1007/978-3-030-25610-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25610-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25609-8

  • Online ISBN: 978-3-030-25610-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics