Skip to main content

Leibniz and the Calculus of Variations

  • Chapter
  • First Online:
Book cover Leibniz and the Structure of Sciences

Part of the book series: Boston Studies in the Philosophy and History of Science ((BSPS,volume 337))

  • 368 Accesses

Abstract

The brachistochrone problem of Johann Bernoulli is considered as the origin of the calculus of variations. The solutions presented by Johann and Jacob Bernoulli and by Newton and Leibniz were all different and highly original. Leibniz’ solution has received less attention than those of the Bernoullis, but I show here that his abstract idea was also general and powerful enough for a general theory, although the history of mathematics took a different path. In fact, his approach quite naturally emerges from his earlier treatment of the refraction of light by his then new calculus, i.e., his derivation of Fermat’s principle. I then analyze the development of his conceptions about the speed of light from that treatment through his work on the brachistochrone problem to his Nouveaux essais from 1706. From the work of the Bernoullis and Leibniz on variational problems, also an analogy between mechanical and optical problems emerged, and this naturally leads to Leibniz’ considerations on the physical concept of action and extremal principles. In contrast to later formulations of such a principle by Maupertuis and Euler, Leibniz devoted much effort to deriving more abstract principles based on considerations of symmetry and determination, as analyzed in De Risi (Geometry and monadology: Leibniz’s analysis situs and philosophy of space. Birkhäuser, Basel/Boston, 2007). Some of his corresponding ideas look surprisingly modern, for instance in the light of Feynman’s path integral approach to quantum mechanics. Leibniz’ ideas are put into the perspective of modern science in Jost (Leibniz und die moderne Naturwissenschaft. Springer, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Gerhardt’s edition Leibniz (1855/1971) of Leibniz’ mathematical works, Leibniz’ derivation of the solution is given as a “Beilage” (pp. 290–295) to a letter written to Johann Bernoulli (letter XXIX, pp. 284–290), which, as Gerhardt explains on p. 117 of Leibniz (1855/1971), was found among Leibniz’ manuscripts.

  2. 2.

    Leibniz expresses the transition to the limit as follows:”Quod si jam concipiamus viam polygonam facillimam ita continuari, ut constet ex angulis numero infinitis, qui incident in horizontales infinitesime distantes seu vicinissimas, habebimus Lineam facillimi descensus” (Leibniz 1855/1971, p. 292), that is, the brachistochrone, or as Leibniz calls it, the tachystoptote.

  3. 3.

    I quote the mathematical texts of Leibniz mostly from Leibniz (2011) where the original bibliographical references can be found. Of course, for most of his mathematical writings, the standard reference is Leibniz (1855/1971).

  4. 4.

    There are also several manuscripts of Leibniz (1906/1995) where he develops his ideas about refraction.

  5. 5.

    Descartes had invoked the analogy of a ball losing speed when going through a medium with more friction. Leibniz criticizes this with the argument that a light particle regains its status when returning to the original medium: “cum tamen radius lucis ex medio magis resistente in medium minus resistens, primo simile, rursus ingressus, priorem statum recuperet, & posito duorum mediorum similium, primi & ultimi, superficies (illius emittentem, hujus recipientem) esse planas parallelas, Directionem recipiat per refractionem posteriorem illi parallelam, quam habuit ante priorem.” (Leibniz (1682/1985), cited after the text in the supplement of Leibniz (2011), p. 40). In an undated manuscript, Leibniz (1880/2008), pp. 304–309, about Descartes, Leibniz repeats the arguement against Descartes that light does not lose force by passing through a rare medium, because such a passage does not affect the angle of refraction:“Car s’il est vray que l’air à cause de sa flexibilité fait perdre une partie de la force comme le tapis celle du globule qui court là dessus, cette force perdue ne sera point rendue lorsque le rayon sort de l’air et retourne dans l’eau. Cependant nous voyons que le rayon y reprend la premiere inclinaison.”, Leibniz (1880/2008), p. 308.

  6. 6.

    In a draft written in or before 1695, Leibniz (1880/2008), p. 472, Leibniz prefers Huygens’ theory of light: “j’avoue que ce que M.Hugens nous a donné sur la production de la lumiere et de la refraction paroisse plus vraisemblable que tout ce qu’on en a donné jusqu’icy.” In the letters he exchanged with Huygens himself, however, he is less committal and discusses the relation between light, gravity and magnetism, see for instance Leibniz (1849/1971), p. 182ff.

  7. 7.

    It is, however, outside the scope of this contribution to investigate Newton’s views on the speed of light.

  8. 8.

    Although it was mentioned by Huygens in his correspondence with Leibniz, see for instance Leibniz (1849/1971), p. 176, in a letter from 1694.

  9. 9.

    Johann Bernoulli wrote brachystochrone instead of brachistochrone, the spelling now usually adopted. In fact, the Greek root is , short, although its superlative is usually written as , shortest.

  10. 10.

    See also the German translations by P.Stäckel (1894/1976).

  11. 11.

    Which was incorrect, see the analysis in Peiffer (1989).

  12. 12.

    See Goldstine (1980) and Freguglia and Giaquinta (2016) for details about the solutions of Newton and Leibniz.

  13. 13.

    I am working on a commented German edition of this fundamental text.

  14. 14.

    Johann Bernoulli had sent the letter ot Leibniz in which he stated the brachystochrone problem on June 9, 1696, and the latter, in spite of ill health, replied to Bernoulli already on June 16. In his letter, Leibniz stated the differential equation, and in his manuscript (pp. 291–295 in Leibniz (1855/1971)), he derived the differential equation (7.17) for the solution, however, apparently without noticing that the solution is the cycloid (whose differential equation Leibniz himself had earlier derived), but only stating that he had already solved the problem in the past (“jam olim”). That the solution is the cycloid is pointed out by Johann Bernoulli, see Leibniz (1855/1971), p. 299, l.10-15, and Leibniz acknowledges this, ibid., p. 310, “Tu longius progressus cycloidem ipsam esse pulchre reperisti.”

  15. 15.

    In Leibniz (1890/2008), it is undated, but Gerhardt suggests that it might have been written between 1690 and 1695. Since, however, Leibniz in this text speaks about the curve of swiftest descent (“la ligne de la plus courte descente entre deux points donnés”, p. 272), that is, the brachistochrone, it might have been written somewhat later, after 1696/7 when Leibniz and the Bernoullis had analyzed that problem.

  16. 16.

    A mathematically more correct way to describe this is that such a circular that is longer than half an equator is a critical point of the variational integral, but not a minimum. In particular, it satisfies the corresponding Euler-Lagrange equation (for a geodesic on the sphere in modern terminology).

  17. 17.

    There are considerable mathematical subtleties involved with the correct definition of such a functional integral. We do not enter that issue, but refer to Jost (2009) and the references provided there.

Bibliography

  • Bell, A. 1947. Christian Huygens. London: E. Arnold.

    Google Scholar 

  • Breger, H. 1999. Über den von Samuel König veröffentlichten Brief zum Prinzip der kleinsten Wirkung. In Pierre Louis Moreau de Maupertuis. Eine Bilanz nach 300 Jahren. ed. H. Hecht, 363–381. Berlin: Berlin Verlag Arno Spitz GmbH.

    Google Scholar 

  • Butazzo, G., M. Giaquinta, and S. Hildebrandt. 1998. One-Dimensional Variational Problems. Oxford: Clarendon Press.

    Google Scholar 

  • Carathéodory, C. 1937. The Beginning of Research in the Calculus of Variations, Osiris, vol. 3, 224–240.

    Article  Google Scholar 

  • Carathéodory, C. 21982/1935. Calculus of Variations and Partial Differential Equations of the First Order. New York: Chelsea; translated from the German, Variationsrechnung und Partielle Differentialgleichungen erster Ordnung. Berlin: Teubner.

    Google Scholar 

  • Cassirer, E. 1902/1998. Leibniz’ System in seinen wissenschaftlichen Grundlagen. Hamburg: Felix Meiner.

    Google Scholar 

  • Clairaut, A.C. 1733. Sur quelques questions de maximis et minimis, 186–194. Paris: Hist Acad Sci.

    Google Scholar 

  • Couturat, L. 1901. La logique de Leibniz, d’après des documents inédits. Paris: Alcan.

    Google Scholar 

  • Euler, L. 1728–1732/1952. De linea brevissima in superficie quacunque duo quaelibet puncta iungente. Comm Acad Sci Petropolitanae, vol. 3, 110–124; in OPERA, I, vol. XXV, ed. C. Carathéodory, 1–12. Bern.

    Google Scholar 

  • Euler, L. 1744/1952. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti. Lausanne and Geneva: M. M. Bousquet & Socios. OPERA, I, vol. XXIV, ed. C. Carathéodory. Bern.

    Google Scholar 

  • Fermat, P. 1891–1922. Œuvres de Fermat. Paris: Gauthier-Villars et fils. T. II, p. 354, p. 457, and T.I, p.170.

    Google Scholar 

  • Feynman, R., R. Leighton, and M. Sands. 21989. The Feynman Lectures on Physics, 3 vols. Englewood Cliffs, N.J: Prentice Hall.

    Google Scholar 

  • Freguglia, P., and M. Giaquinta. 2016. The Early Period of the Calculus of Variations. Cham: Birkhäuser.

    Book  Google Scholar 

  • Giaquinta, M., and S. Hildebrandt. 1996. Calculus of Variations, 2 vols. Berlin/New York: Springer.

    Google Scholar 

  • Goldenbaum, U. 2004. Appell an das Publikum, 2 Bde. Berlin: Akademie-Verlag.

    Google Scholar 

  • Goldenbaum, U. 2016. Ein gefälschter Leibnizbrief? Plädoyer für seine Authentizität, Hefte der Leibniz-Stiftungsprofessur, Bd.6. Hannover: Wehrhahn Verlag.

    Google Scholar 

  • Goldstine, H. 1980. A History of the Calculus of Variations from the 17th Through the 19th Century. New York: Springer.

    Book  Google Scholar 

  • Goldstine, H.H. 1991. Introduction. In Die Streitschriften von Jacob und Johann Bernoulli, Variationsrechnung, bearbeitet und kommentiert von H. H. Goldstine mit historischen Anmerkungen von P. Radelet-de Grave, 1–113. Basel/Boston/Berlin: Birkhäuser.

    Google Scholar 

  • Huygens, C. 1690/1912. Traité de la lumière. Leiden: Pierre vander Aa; English translation by S. Thompson, Isis 1,273. London.

    Google Scholar 

  • Jost, J. 32005. Postmodern Analysis. Berlin: Springer.

    Google Scholar 

  • Jost, J. 2009. Geometry and Physics. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Jost, J. 2019. Leibniz und die moderne Naturwissenschaft. Monograph, to appear in the Series Wissenschaft und Philosophie – Science and Philosophy – Sciences et Philosophie. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Jost, J., and X. Li-Jost. 1998. Calculus of Variations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kabitz, W. 1913. Über eine in Gotha aufgefundene Abschrift des von S. König in seinem Streite mit Maupertuis und der Akademie veröffentlichten, seinerzeit für unecht erklärten Leibnizbriefes. In Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 2, 632–638. Berlin: Halbband.

    Google Scholar 

  • Knobloch, E. 2012. Leibniz and the brachistochrone, Documenta Math, Extra Vol. ISMP, 15–18.

    Google Scholar 

  • König, S. 1752. Appel au public, du jugement de l’Académie royale de Berlin, sur un fragment de lettre de Mr. de Leibnitz, cité par Mr. Koenig.

    Google Scholar 

  • Lagrange, J.L. 1760–1761/1894. Essai sur une nouvelle méthode pour déterminer les maxima et les minima des formules intégrales indéfinies, OEUVRES, vol. I, 333–362. Misc Soc Tur, vol. 11, 173–195. German translation by P. Stäckel, Ostwald’s Klassiker, vol. 47, 3–56, Leipzig (Reprinted Wiss.Buchges., Darmstadt, 1976) and English translation (in part) by Struik, D.J. A Source Book in Mathematics, 407–418.

    Google Scholar 

  • Leibniz, G.W. 1682/1985. Unicum Opticae, Catoptricae, & Dioptricae Principium. Autore G.G. L., Acta eruditorum, 185–190; reprinted 10–14 in Leibniz, G.W., Œuvre concernant la physique, ed. J. Peyroux. Paris; German translation in Leibniz, G.W. (2011), 19–28, and in Leibniz, G.W., Schöpferische Vernunft, translated and ed. W. von Engelhardt, 287–298. Münster, Köln: Böhlau-Verlag.

    Google Scholar 

  • Leibniz, G.W. 1697. Communicatio suae solutionis problematis. Autore G.G.L., Acta eruditorum, 201–205, reprinted in Leibniz (1858/2004), 331–336

    Google Scholar 

  • Leibniz, G.W. 1849/1971. Leibnizens mathematische Schriften. Band II. Briefwechsel zwischen Leibniz, Hugens van Zulichem und dem Marquis de l’Hospital, ed. C.I. Gerhardt, Halle, Part I, Vol. II; reprinted: Leibniz, G.W., Mathematische Schriften 1. Hildesheim/New York: Georg Olms.

    Google Scholar 

  • Leibniz, G.W. 1855/1971. Leibnizens mathematische Schriften, ed. C.I. Gerhardt, Halle, Part I, vol. III; reprinted: Leibniz, G.W., Mathematische Schriften 2. Hildesheim/New York: Georg Olms.

    Google Scholar 

  • Leibniz, G.W. 1858/2004. Leibnizens mathematische Schriften, ed. C.I. Gerhardt, Halle, Part II, vol. I; reprinted: Leibniz, G.W., Mathematische Schriften 5. Hildesheim/Zürich/New York: Georg Olms.

    Google Scholar 

  • Leibniz, G.W. 1880/2008. Die philosophischen Schriften von Gottfried Wilhelm Leibniz, vol.4, ed. C.I. Gerhardt. Berlin, reprinted: Leibniz, G.W. Die philosophischen Schriften 4. Hildesheim/Zürich/New York: Georg Olms.

    Google Scholar 

  • Leibniz, G.W. 1882/1978 Die philosophischen Schriften von Gottfried Wilhelm Leibniz, vol.5, ed. C.I. Gerhardt. Berlin, reprinted: Leibniz, G.W., Die philosophischen Schriften 4. Hildesheim, Zürich, New York: Georg Olms.

    Google Scholar 

  • Leibniz, G.W. 1890/2008. Die philosophischen Schriften von Gottfried Wilhelm Leibniz, vol.7, ed. C.I. Gerhardt, Berlin, reprinted: Leibniz, G.W., Die philosophischen Schriften 7. Hildesheim/Zürich/New York: Georg Olms.

    Google Scholar 

  • Leibniz, G.W. 1906. Leibnizens nachgelassene Schriften physikalischen, mechanischen und technischen Inhalts. ed. E. Gerland. Leipzig: Teubner; reprinted: Leibniz, G.W. 1995. Nachgelassene Schriften physikalischen, mechanischen und technischen Inhalts. Hildesheim/Zürich/New York: Georg Olms.

    Google Scholar 

  • Leibniz, G.W. 2011. Die mathematischen Zeitschriftenartikel. Übersetzt und kommentiert von H.-J. Heß u. M.-L. Babin. Hildesheim/Zürich/New York: Georg Olms.

    Google Scholar 

  • de Maupertuis, P.-L.M. 1748. Les Loix du Mouvement et Du Repos deduites d’un Principe Metaphysique. In Mémoires de l’Académie Royale des Sciences et Belles Lettres, t. II, 267–294. Berlin; the Paris publication is:

    Google Scholar 

  • de Maupertuis, P.-L. M. 1751/1965. Accord de differentes loix de la nature qui avoient jusqu’ici paru incompatibles. In Histoire de l’Académie Royale des Sciences, 564–578. Amsterdam: Mortier; reprinted pp. 1–28 in P.-L.M. de Maupertuis, Oeuvres, IV. Hildesheim: Georg Olms.

    Google Scholar 

  • McDonough, J. 2009. Leibniz on natural teleology and the laws of optics. Philosophy and Phenomenological Research 78(3): 505–544.

    Article  Google Scholar 

  • Newton, I. 1704. Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. Also Two Treatises of the Species and Magnitude of Curvilinear Figures. London: S. Smith and B. Walford.

    Google Scholar 

  • Peiffer, J. 1989. Le problème de la brachystochrone à travers les relations de Jean I Bernoulli avec L’Hôpital et Varignon. Studia Leibnitiana Sonderheft 17: 59–81.

    Google Scholar 

  • Pulte, H. 1989. Das Prinzip der kleinsten Wirkung und die Kraftkonzeptionen der rationalen Mechanik. Stuttgart: Franz Steiner.

    Google Scholar 

  • De Risi, V. 2007. Geometry and Monadology: Leibniz’s Analysis Situs and Philosophy of Space. Basel/Boston: Birkhäuser.

    Book  Google Scholar 

  • Sabra, A.I. 21981. Theories of Light from Descartes to Newton. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schramm, M. 1984. Natur ohne Sinn? Das Ende des teleologischen Weltbildes. Graz: Verlag Styria.

    Google Scholar 

  • Stäckel, P. 1894/1976. Variationsrechnung, Ostwald’s Klassiker, vol. 47. Leipzig: Engelmann; reprinted Darmstadt: Wiss. Buchges.

    Google Scholar 

  • Stöltzner, M. 22012. Das Prinzip der kleinsten Wirkung. In Philosophie der Physik, ed. M. Esfeld, 342–367. Frankfurt/M: Suhrkamp.

    Google Scholar 

  • Thiele, R. 2007. Von der Bernoullischen Brachistochrone zum Kalibrator-Konzept. Turnhout: Brepols.

    Book  Google Scholar 

  • Yourgrau, W., and S. Mandelstam. 1979. Variational principles in dynamics and quantum theory. New York: Dover (reprint of the 3rd ed., 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Jost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jost, J. (2019). Leibniz and the Calculus of Variations. In: De Risi, V. (eds) Leibniz and the Structure of Sciences. Boston Studies in the Philosophy and History of Science, vol 337. Springer, Cham. https://doi.org/10.1007/978-3-030-25572-5_7

Download citation

Publish with us

Policies and ethics