Skip to main content

Persister Formation and Antibiotic Tolerance of Chronic Infections

  • Chapter
  • First Online:

Abstract

Two different types of mechanisms allow bacteria to evade killing by antibiotics—genetically encoded resistance and phenotypic tolerance conferred by persister cells. While our knowledge of resistance mechanisms is fairly sophisticated, understanding of tolerance is still fragmentary, partly because the phenomenon is only displayed by a few rare cells.

Treatment of acute infections has benefited substantially from our understanding of mechanisms of resistance. It is reasonable to expect that treatment of chronic infections will similarly benefit from deciphering the mechanisms that cause the formation of drug-tolerant persisters. In this chapter, we will discuss both the mechanism of persister formation and therapeutic approaches to eradicate these seemingly invincible cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305, 1622–1625.

    Article  CAS  PubMed  Google Scholar 

  • Berghoff, B. A., Hoekzema, M., Aulbach, L., & Wagner, E. G. (2017). Two regulatory RNA elements affect TisB-dependent depolarization and persister formation. Molecular Microbiology, 103, 1020–1033.

    Article  CAS  PubMed  Google Scholar 

  • Bigger, J. W. (1944). Treatment of staphylococcal infections with penicillin. Lancet, 2, 497–500.

    Article  Google Scholar 

  • Brotz-Oesterhelt, H., Beyer, D., Kroll, H. P., Endermann, R., Ladel, C., Schroeder, W., Hinzen, B., Raddatz, S., Paulsen, H., Henninger, K., Bandow, J. E., Sahl, H. G., & Labischinski, H. (2005). Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nature Medicine, 11, 1082–1087.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, D. R., Shan, Y., Zalis, E. A., Isabella, V., & Lewis, K. (2018). A genetic determinant of persister cell formation in bacterial pathogens. Journal of Bacteriology, 200, e00303-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho, H., Uehara, T., & Bernhardt, T. G. (2014). Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, 159, 1300–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon, B. P., Nakayasu, E. S., Fleck, L. E., Lafleur, M. D., Isabella, V. M., Coleman, K., Leonard, S. N., Smith, R. D., Adkins, J. N., & Lewis, K. (2013). Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature, 503, 365–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlon, B. P., Rowe, S. E., Gandt, A. B., Nuxoll, A. S., Donegan, N. P., Zalis, E. A., Clair, G., Adkins, J. N., Cheung, A. L., & Lewis, K. (2016). Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology, 1, 16051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia, F. F., D’onofrio, A., Rejtar, T., Li, L., Karger, B. L., Makarova, K., Koonin, E. V., & Lewis, K. (2006). Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. Journal of Bacteriology, 188, 8360–8367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, B. D., Chen, L. L., & Tai, P. C. (1986). Misread protein creates membrane channels: An essential step in the bactericidal action of aminoglycosides. Proceedings of the National Academy of Sciences of the United States of America, 83, 6164–6168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorr, T., Lewis, K., & Vulic, M. (2009). SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genetics, 5, E1000760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorr, T., Vulic, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, E1000317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fleck, L. E., North, E. J., Lee, R. E., Mulcahy, L. R., Casadei, G., & Lewis, K. (2014). A screen for and validation of prodrug antimicrobials. Antimicrobial Agents and Chemotherapy, 58, 1410–1419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fong, S. S., Nanchen, A., Palsson, B. O., & Sauer, U. (2006). Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. The Journal of Biological Chemistry, 281, 8024–8033.

    Article  CAS  PubMed  Google Scholar 

  • Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., & Balaban, N. Q. (2014). Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 513, 418–421.

    Article  CAS  PubMed  Google Scholar 

  • Gavrish, E., Sit, C. S., Cao, S., Kandror, O., Spoering, A., Peoples, A., Ling, L., Fetterman, A., Hughes, D., Bissell, A., Torrey, H., Akopian, T., Mueller, A., Epstein, S., Goldberg, A., Clardy, J., & Lewis, K. (2014). Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease Clpc1p1p2. Chemistry and Biology, 21, 509–518.

    Article  CAS  PubMed  Google Scholar 

  • Germain, E., Castro-Roa, D., Zenkin, N., & Gerdes, K. (2013). Molecular mechanism of bacterial persistence by HipA. Molecular Cell, 52, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Goormaghtigh, F., Fraikin, N., Putrins, M., Hallaert, T., Hauryliuk, V., Garcia-Pino, A., Sjodin, A., Kasvandik, S., Udekwu, K., Tenson, T., Kaldalu, N., & Van Melderen, L. (2018). Reassessing the role of type II toxin-antitoxin systems in formation of Escherichia coli type II persister cells. MBio, 9, e00640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gristina, A. G., Hobgood, C. D., Webb, L. X., & Myrvik, Q. N. (1987). Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials, 8, 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Gurnev, P. A., Ortenberg, R., Dorr, T., Lewis, K., & Bezrukov, S. M. (2012). Persister-promoting bacterial toxin TisB produces anion-selective pores in planar lipid bilayers. FEBS Letters, 586, 2529–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen, S., Lewis, K., & Vulić, M. (2008). The role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrobial Agents and Chemotherapy, 52(8), 2718–2726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms, A., Fino, C., Sorensen, M. A., Semsey, S., & Gerdes, K. (2017). Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. MBio, 8, e01964-17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooper, D. (2001). Mechanism of action of antimicrobials: Focus on fluoroquinolones. Clinical Infectious Diseases, 32, S9–S15.

    Article  CAS  PubMed  Google Scholar 

  • Jesaitis, A. J., Franklin, M. J., Berglund, D., Sasaki, M., Lord, C. I., Bleazard, J. B., Duffy, J. E., Beyenal, H., & Lewandowski, Z. (2003). Compromised host defense on Pseudomonas aeruginosa biofilms: Characterization of neutrophil and biofilm interactions. Journal of Immunology, 171, 4329–4339.

    Article  CAS  Google Scholar 

  • Kaspy, I., Rotem, E., Weiss, N., Ronin, I., Balaban, N. Q., & Glaser, G. (2013). Hipa-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nature Communications, 4, 3001.

    Article  PubMed  CAS  Google Scholar 

  • Keren, I., Kaldalu, N., Spoering, A., Wang, Y., & Lewis, K. (2004a). Persister cells and tolerance to antimicrobials. FEMS Microbiology Letters, 230, 13–18.

    Article  CAS  PubMed  Google Scholar 

  • Keren, I., Shah, D., Spoering, A., Kaldalu, N., & Lewis, K. (2004b). Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. Journal of Bacteriology, 186, 8172–8180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R., & Lewis, K. (2013). Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science, 339, 1213–1216.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W., Zhu, W., Hendricks, G. L., Van Tyne, D., Steele, A. D., Keohane, C. E., Fricke, N., Conery, A. L., Shen, S., Pan, W., Lee, K., Rajamuthiah, R., Fuchs, B. B., Vlahovska, P. M., Wuest, W. M., Gilmore, M. S., Gao, H., Ausubel, F. M., & Mylonakis, E. (2018). A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature, 556, 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirstein, J., Hoffmann, A., Lilie, H., Schmidt, R., Rubsamen-Waigmann, H., Brotz-Oesterhelt, H., Mogk, A., & Turgay, K. (2009). The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Molecular Medicine, 1, 37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan, B. W., Valenta, J. A., Benedik, M. J., & Wood, T. K. (2013). Arrested protein synthesis increases persister-like cell formation. Antimicrobial Agents and Chemotherapy, 57, 1468–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, B. G., Park, E. Y., Lee, K. E., Jeon, H., Sung, K. H., Paulsen, H., Rubsamen-Schaeff, H., Brotz-Oesterhelt, H., & Song, H. K. (2010). Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nature Structural and Molecular Biology, 17, 471–478.

    Article  CAS  PubMed  Google Scholar 

  • Leid, J. G., Shirtliff, M. E., Costerton, J. W., & Stoodley, P. (2002). Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infection and Immunity, 70, 6339–6345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, K. (2001). Riddle of biofilm resistance. Antimicrobial Agents and Chemotherapy, 45, 999–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis, K. (2007). Persister cells, dormancy and infectious disease. Nature Reviews. Microbiology, 5, 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, K. (2013). Platforms for antibiotic discovery. Nature Reviews. Drug Discovery, 12, 371–387.

    Article  CAS  PubMed  Google Scholar 

  • Li, D. H., Chung, Y. S., Gloyd, M., Joseph, E., Ghirlando, R., Wright, G. D., Cheng, Y. Q., Maurizi, M. R., Guarne, A., & Ortega, J. (2010). Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Chemistry and Biology, 17, 959–969.

    Article  CAS  PubMed  Google Scholar 

  • Maisonneuve, E., & Gerdes, K. (2014). Molecular mechanisms underlying bacterial persisters. Cell, 157, 539–548.

    Article  CAS  PubMed  Google Scholar 

  • Malik, M., Zhao, X., & Drlica, K. (2006). Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Molecular Microbiology, 61, 810–825.

    Article  CAS  PubMed  Google Scholar 

  • Michel, K. H., & Kastner, R. E. (Eli Lilly and Company). (1985). A54556 antibiotics and process for production thereof. US Patent 4492650.

    Google Scholar 

  • Michiels, J. E., Van Den Bergh, B., Verstraeten, N., Fauvart, M., & Michiels, J. (2016). In vitro emergence of high persistence upon periodic aminoglycoside challenge in the ESKAPE pathogens. Antimicrobial Agents and Chemotherapy, 60, 4630–4637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mojsoska, B., Cameron, D. R., Bartell, J. A., Haagensen, J. A. J., Sommer, L. M., Lewis, K., Molin, S., & Johansen, H. K. (2019). The high persister phenotype of Pseudomonas aeruginosa is associated with increased fitness and persistence in cystic fibrosis airways. bioRxiv, 561589.

    Google Scholar 

  • Molina-Quiroz, R. C., Lazinski, D. W., Camilli, A., & Levy, S. B. (2016). Transposon-sequencing analysis unveils novel genes involved in the generation of persister cells in uropathogenic Escherichia coli. Antimicrobial Agents and Chemotherapy, 60, 6907–6910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, S. A., Moennich, D. M., & Gresser, M. J. (1983). Synthesis and hydrolysis of ADP-arsenate By beef heart submitochondrial particles. The Journal of Biological Chemistry, 258, 6266–6271.

    CAS  PubMed  Google Scholar 

  • Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mulcahy, L. R., Burns, J. L., Lory, S., & Lewis, K. (2010). Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. Journal of Bacteriology, 192, 6191–6199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’shea, R., & Moser, H. E. (2008). Physicochemical properties of antibacterial compounds: Implications for drug discovery. Journal of Medicinal Chemistry, 51(10), 2871–2878.

    Article  PubMed  CAS  Google Scholar 

  • Pandey, D. P., & Gerdes, K. (2005). Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Research, 33, 966–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu, Y., Li, Y., Jin, X., Tian, T., Ma, Q., Zhao, Z., Lin, S. Y., Chen, Z., Li, B., Yao, G., Leake, M. C., Lo, C. J., & Bai, F. (2019). ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Molecular Cell, 73, 143–156. e4.

    Article  CAS  PubMed  Google Scholar 

  • Radlinski, L., Rowe, S. E., Kartchner, L. B., Maile, R., Cairns, B. A., Vitko, N. P., Gode, C. J., Lachiewicz, A. M., Wolfgang, M. C., & Conlon, B. P. (2017). Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus. PLoS Biology, 15, e2003981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramisetty, B. C., Ghosh, D., Roy Chowdhury, M., & Santhosh, R. S. (2016). What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Frontiers in Microbiology, 7, 1882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson, G. T., Zhao, J., Desai, B. V., Coleman, W. H., Nicas, T. I., Gilmour, R., Grinius, L., Morrison, D. A., & Winkler, M. E. (2002). Vancomycin tolerance induced by erythromycin but not by loss of vncrs, vex3, or pep27 function in Streptococcus pneumoniae. Journal of Bacteriology, 184, 6987–7000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sass, P., Josten, M., Famulla, K., Schiffer, G., Sahl, H. G., Hamoen, L., & Brotz-Oesterhelt, H. (2011). Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proceedings of the National Academy of Sciences of the United States of America, 108, 17474–17479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher, M. A., Piro, K. M., Xu, W., Hansen, S., Lewis, K., & Brennan, R. G. (2009). Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science, 323, 396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher, M. A., Balani, P., Min, J., Chinnam, N. B., Hansen, S., Vulic, M., Lewis, K., & Brennan, R. G. (2015). Hipba-promoter structures reveal the basis of heritable multidrug tolerance. Nature, 524, 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, D., Zhang, Z., Khodursky, A., Kaldalu, N., Kurg, K., & Lewis, K. (2006). Persisters: A distinct physiological state of E. coli. BMC Microbiology, 6, 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan, Y., Lazinski, D., Rowe, S., Camilli, A., & Lewis, K. (2015). Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. MBio, 6, e00078-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan, Y., Brown Gandt, A., Rowe, S. E., Deisinger, J. P., Conlon, B. P., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. MBio, 8, e02267-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, B., Brown, A. V., Matluck, N. E., Hu, L. T., & Lewis, K. (2015). Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrobial Agents and Chemotherapy, 59, 4616–4624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoering, A. L., & Lewis, K. (2001). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. Journal of Bacteriology, 183, 6746–6751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358, 135–138.

    Article  CAS  PubMed  Google Scholar 

  • Torrey, H. L., Keren, I., Via, L. E., Lee, J. S., & Lewis, K. (2016). High persister mutants in Mycobacterium tuberculosis. PLos One, 11, e0155127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Unoson, C., & Wagner, E. (2008). A small SOS-induced toxin is targeted against the inner membrane in Escherichia coli. Molecular Microbiology, 70, 258–270.

    Article  CAS  PubMed  Google Scholar 

  • Vakulenko, S. B., & Mobashery, S. (2003). Versatility of aminoglycosides and prospects for their future. Clinical Microbiology Reviews, 16, 430–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Den Bergh, B., Michiels, J. E., Wenseleers, T., Windels, E. M., Boer, P. V., Kestemont, D., De Meester, L., Verstrepen, K. J., Verstraeten, N., Fauvart, M., & Michiels, J. (2016). Frequency of antibiotic application drives rapid evolutionary adaptation of Escherichia coli persistence. Nature Microbiology, 1, 16020.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, J., Argaman, L., Wagner, E. G., & Altuvia, S. (2004). The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Current Biology, 14, 2271–2276.

    Article  CAS  PubMed  Google Scholar 

  • Vuong, C., Voyich, J. M., Fischer, E. R., Braughton, K. R., Whitney, A. R., Deleo, F. R., & Otto, M. (2004). Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cellular Microbiology, 6, 269–275.

    Article  CAS  PubMed  Google Scholar 

  • Wilmaerts, D., Bayoumi, M., Dewachter, L., Knapen, W., Mika, J. T., Hofkens, J., Dedecker, P., Maglia, G., Verstraeten, N., & Michiels, J. (2018). The persistence-inducing toxin HokB forms dynamic pores that cause ATP leakage. MBio, 9, e00744-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, X., Sharma, B., Niles, S., O’connor, K., Schilling, R., Matluck, N., D’onofrio, A., Hu, L. T., & Lewis, K. (2018). Identifying vancomycin as an effective antibiotic for killing Borrelia burgdorferi. Antimicrobial Agents and Chemotherapy, 62, e01201-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalis, E. A., Nuxoll, A. S., Manuse, S., Clair, G., Radlinski, L. C., Conlon, B. P., Adkins, J., & Lewis, K. (2019). Stochastic variation in expression of the tricarboxylic acid cycle produces persister cells. MBio, 10, e01930–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lewis, K., Manuse, S. (2019). Persister Formation and Antibiotic Tolerance of Chronic Infections. In: Lewis, K. (eds) Persister Cells and Infectious Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-25241-0_4

Download citation

Publish with us

Policies and ethics