Skip to main content

New Concept in Packaging: Milk Protein Edible Films

  • Chapter
  • First Online:
Health and Safety Aspects of Food Processing Technologies

Abstract

Ready to eat and perishable foods need specific precautions for packaging. The main mission of food packaging is widely used for preservation of food quality, to expand the shelf-life by inhibiting oxygen, light, moisture, and ensure microbial safety for consumers. The packaging industries are studying on renewable, environmentally-friendly and biodegradable alternatives to take the place of petroleum-based packaging materials. The packaging plays an essential function in communication system of content, product differentiation and branding. Appropriate and efficient packaging such as edible films and coatings, forestall of contamination facilitates storage and transportation by averting moisture loss, solute transport, aromas loss, water absorption in the food. There is a rising interest in recent years, in a form of active packaging by proteins, lipids, polysaccharides or combinations of these. Edible films serve as a functional barrier between food and its environment, guaranteeing the safety of foodstuffs. While the oxygen barrier of casein-based films is high, whey protein films have good water vapor and oxygen permeability. Addition of plasticizers to protein-based film formulations are required to reduce film fragility and moisture barrier ability, to give specific plastic properties, to enhance processability, protraction and water vapor permeability of protein films. In this chapter, the principal functions and properties of milk protein edible films in packaging industries are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguila AO, Brock JH (2001) Lactoferrin: antimicrobial and diagnostic properties. Biotechnol Apl 18(2):76–83

    Google Scholar 

  • Alam S, Paul S (2001) Efficacy of casein coating on storage behavior of kinnow. J Food Sci Technol 38(3):235–238

    CAS  Google Scholar 

  • Aliheidari N, Fazaeli M, Ahmadi R, Ghasemlou M, Emam-Djomeh Z (2013) Comparative evaluation on fatty acid and Matricaria recutita essential oil incorporated into casein-based film. Int J Biol Macromol 56:69–75

    Article  CAS  PubMed  Google Scholar 

  • Al-Nabushi AA, Han JH, Liu Z, Rodrigues-Vieira ET, Holley RA (2006) Temperature-s ensitive Mmicrocapsules containing lactoferrin and their action against Carnobacterium viridans on Bologna. J Food Sci 71(6):208–214

    Article  CAS  Google Scholar 

  • Aloui H, Khwaldia K (2016) Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr Rev Food Sci Food Saf 15:1080–1103

    Article  CAS  PubMed  Google Scholar 

  • Anker M, Berntsen J, Hermansson AM, Stading M (2002) Improved water vapor barrier of whey protein films by addition of an acetylated monoglyceride. Innov Food Sci Emerg 3(1):81–92

    Article  CAS  Google Scholar 

  • Arnold RR, Cole MF (1977) A bactericidal effect for human lactoferrin. Science 197(4300):263–265

    Article  CAS  PubMed  Google Scholar 

  • Arrieta MP, Peltzer MA, Garrigós MDC, Jiménez A (2012) Structure and mechanical properties of sodium and calcium caseinate edible active films with carvacrol. J Food Eng 114(4):486–494

    Article  CAS  Google Scholar 

  • Audic JL, Chaufer B (2012) Properties of biodegradable poly(butylene adipate-co-terephtalate) and sodium caseinate blends. J Appl Polym Sci 125:E459–E467

    Article  CAS  Google Scholar 

  • Azevedo VM, Dias MV, Borges SV, Costa ALR, Silva EK, Medeiros EAA, Soares NFF (2015a) Development of whey protein isolate bio-nanocomposites: effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties. Food Hydrocoll 48:179–188

    Article  CAS  Google Scholar 

  • Azevedo VM, Silva EK, Pereira CFG, Costa ALR, Borges SV (2015b) Whey protein isolate biodegradable films: influence of the citric acid and montmorillonite clay nanoparticles on the physical properties. Food Hydrocoll 43:252–258

    Article  CAS  Google Scholar 

  • Badr KR, Ahmed ZS, El Gamal MS (2014) Evaluation of the antimicrobial action of whey protein edible films incorported with cinnamon, cumin and thyme against spoilage flora of fresh beef. Int J Agric Res 9(5):242–250

    Article  CAS  Google Scholar 

  • Baldwin EA, Nisperos-Carriedo MO, Baker RA (1995) Edible coatings for lightly processed fruits and vegetables. Hortic Sci 30(1):35–38

    Google Scholar 

  • Basiak E, Galus S, Lenart A (2015) Characterisation of composite edible films based on wheat starch and whey-protein isolate. Int J Food Sci Technol 50:372–380

    Article  CAS  Google Scholar 

  • Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479

    Article  CAS  PubMed  Google Scholar 

  • Borubon AI, Pinheiro AC, Cerqueira MA, Rocha CMR, Avides MC, Quintas MAC, Vicente AA (2011) Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. J Food Eng 106:111–118

    Article  CAS  Google Scholar 

  • Bourtoom T (2008) Edible films and coatings: characteristics and properties. Int Food Res J 15(3):237–248

    Google Scholar 

  • Branen JK, Davidson PM (2000) Activity of hydrolyzed lactoferrin against foodborne pathogenic bacteria in growth media: the effect of EDTA. Lett Appl Microbiol 30:233–237

    Article  CAS  PubMed  Google Scholar 

  • Brown CA, Wang B, Oh JH (2008) Antimicrobial activity of lactoferrin against foodborne pathogenic bacteria incorporated into edible chitosan film. J Food Prot 71(2):319–324

    Article  CAS  PubMed  Google Scholar 

  • Bugnicourt E, Schmid M, McNerney O, Wildner J, Smykala L, Lazzeri A, Cinelli P (2013) Processing and validation of whey-protein-coated films and laminates at semi-ındustrial scale as novel recyclable food packaging materials with excellent barrier properties. Adv Mater Sci Eng 2013:1–10

    Article  CAS  Google Scholar 

  • Ca Hoang L, Chaine A, Gregorie L, Wache Y (2010) Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiol 27:940–944

    Article  CAS  Google Scholar 

  • Cagri A, Ustunol Z, Ryser ET (2001) Antimicrobial, mechanical, and moisture barrier properties of low pH whey protein based edible films containing p-amino benzoic or sorbic acids. J Food Sci 66:865–870

    Article  CAS  Google Scholar 

  • Cagri A, Ustunol Z, Ryser ET (2002) Inhibition of three pathogens on Bologna and summer sausage slices using antimicrobial edible films. J Food Sci 67:2317–2324

    Article  CAS  Google Scholar 

  • Cagri A, Ustunol Z, Osburn W, Ryser ET (2003) Inhibition of Listeria monocytogenes on hot dogs using antimicrobial whey protein-based edible casings. J Food Sci 68:291–299

    Article  CAS  Google Scholar 

  • Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67(4):833–848

    Article  CAS  PubMed  Google Scholar 

  • Calvo H, Marco P, Blanco D, Oria R, Venturini ME (2017) Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol 63:101–110

    Article  CAS  PubMed  Google Scholar 

  • Catarino MD, Alves-Silva JM, Fernandes RP, Gonçalves MJ, Salgueiro LR, Henriques MF, Cardoso SM (2017) Development and performance of whey protein active coatings with Origanum virens essential oils in the quality and shelf life improvement of processed meat products. Food Control 80:273–280

    Article  CAS  Google Scholar 

  • Cinelli P, Schmid M, Bugnicourt E, Wildner J, Bazzichi A, Anguillesi I, Lazzeri A (2014) Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym Degrad Stab 108:151–157

    Article  CAS  Google Scholar 

  • Cutter CN (2006) Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci 74(1):131–142

    Article  PubMed  Google Scholar 

  • Davidson PM, Taylor MT (2007) Chemical preservativesand natural antimicrobial compounds. Food microbiology: fundamentals and frontiers. ASM Press, Washington, pp 713–734

    Google Scholar 

  • De Azeredo HMC (2012) Edible coatings. In: Rodrigues S, Fernandes FAN (eds) Advances in fruit processing technologies. CRC Press, Boca Raton, pp 345–361

    Chapter  Google Scholar 

  • De Wit JN (2009) Thermal behaviour of bovine β‐lactoglobulin at temperatures up to 150 °C. A review. Trends Food Sci Tech 20(1):27–34

    Article  CAS  Google Scholar 

  • Debeaufort F, Quezada-Gallo JA, Voilley A (1998) Edible films and coatings: tomorrow’s packagings: a review. Crit Rev Food Sci Nutr 38(4):299–313

    Article  CAS  PubMed  Google Scholar 

  • Dehghani S, Hosseini SV, Regenstein JM (2018) Edible films and coatings in seafood preservation: a review. Food Chem 240:505–513

    Article  CAS  PubMed  Google Scholar 

  • Di Pierro P, Sorrentino A, Mariniello L, Giosafatto CVL, Porta R (2011) Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT Food Sci Technol 44:2324–2327

    Article  CAS  Google Scholar 

  • Diak OA, Bani-Jaber A, Amro B, Jones D, Andrews GP (2007) The manufacture and characterization of casein films as novel tablet coatings. Food Bioprod Process 85(3):284–290

    Article  CAS  Google Scholar 

  • Dickinson E, Yamamoto Y (1996) Effect of lecithin on the viscoelastic properties of β-lactoglobulin-stabilized emulsion gels. Food Hydrocoll 10:301–307

    Article  CAS  Google Scholar 

  • Donhowe IG, Fennema OJ (1993) The effects of plasticizers on crystallinity, permeability, and mechanical properties of methylcellulose films. J Food Process Preserv 17(4):247–257

    Article  CAS  Google Scholar 

  • Duan J, Jiang Y, Zhao Y (2011) Chitosan–whey protein isolate composite films for encapsulation and stabilization of fish oil containing ultra pure omega-3 fatty acids. J Food Sci 76(1):133–141

    Article  CAS  Google Scholar 

  • Dudley ED, Hotchkiss JH (1989) Cysteine as an inhibitor of polyphenol oxidase. J Food Biochem 13(1):65–75

    Article  CAS  Google Scholar 

  • Elagamy EI (2000) Effect of heat treatment on camel milk proteins with respect to antimicrobial factors: a comparison with cow’s and buffalo milk proteins. Food Chem 68:227–232

    Article  CAS  Google Scholar 

  • Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48(5):430–441

    Article  CAS  PubMed  Google Scholar 

  • Embuscado ME, Huber KC (2009) Edible films and coatings for food applications. Springer, London

    Google Scholar 

  • Fabra MJ, Hambleton A, Talens P, Debeaufort F, Chiralt A (2011) Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocoll 25:1441–1447

    Article  CAS  Google Scholar 

  • Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Technol 22(6):292–303

    Article  CAS  Google Scholar 

  • Feng Z, Wu G, Liu C, Li D, Jiang B, Zhang X (2018) Edible coating based on whey protein isolate nanofibrils forantioxidation and inhibition of product browning. Food Hydrocoll 79:179–188

    Article  CAS  Google Scholar 

  • Fernandez L, de Apodaca ED, Cebrián M, Villarán MC, Maté JI (2007) Effect of the unsaturation degree and concentration of fatty acids on the properties of WPI-based edible films. Eur Food Res Technol 224(4):415–420

    Article  CAS  Google Scholar 

  • Fernandez-Pan I, Royo M, Maté JI (2012) Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. J Food Sci 77(7):383–390

    Article  CAS  Google Scholar 

  • Finkelstein RA, Csciortino CB, McIntosh MA (1983) Role of iron in microbe-host interactions. Rev Infect Dis 5:759–777

    Article  CAS  Google Scholar 

  • Fox PF, Brodkorb A (2008) The casein micelle: historical aspects, current concepts and significance. Int Dairy J 18(7):677–684

    Article  CAS  Google Scholar 

  • Gadang VP, Hettiarachchy NS, Johnson MG, Owens C (2008) Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a turkey frankfurter system. J Food Sci 73(8):389–394

    Article  CAS  Google Scholar 

  • Galus S, Kadzinska J (2015) Food applications of emulsion-based edible films and coatings. Trends Food Sci Technol 45(2):273–228

    Article  CAS  Google Scholar 

  • Galus S, Kadzinska J (2016a) Moisture sensitivity, optical, mechanical and structural properties of whey protein-based edible films ıncorporated with rapeseed oil. Food Technol Biotech 54(1):78–89

    Article  CAS  Google Scholar 

  • Galus S, Kadzinska J (2016b) Whey protein edible films modified with almond and walnut oils. Food Hydrocoll 52:78–86

    Article  CAS  Google Scholar 

  • Garcia-Montoya IA, Cendon TS, Arevalo-Gallegos S, Rascon-Cruz Q (2012) Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta 1820(3):226–236

    Article  CAS  PubMed  Google Scholar 

  • Gennadios A, Hanna MA, Kurth LB (1997) Application of edible coatings on meats, poultry and seafoods: a review. LWT Food Sci Technol 30(4):337–350

    Article  CAS  Google Scholar 

  • Gerez CL, Font de Valdez G, Gigante ML, Grosso CRF (2012) Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett Appl Microbiol 54(6):552–556

    Article  CAS  PubMed  Google Scholar 

  • González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q (2009) Lactoferrin: structure, function and applications. Int J Antimicrob Agents 33(4):301–308

    Article  PubMed  CAS  Google Scholar 

  • Guilbert S, Gontard N, LGM G (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT Food Sci Technol 29(1-2):10–17

    Article  CAS  Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  • Han J, Bourgeois S, Lacroix M (2009) Protein-based coatings on peanut to minimise oil migration. Food Chem 115:462–468

    Article  CAS  Google Scholar 

  • Hasanzati Rostami A, Motallebi AA, Khanipour AA, Soltani M, Khanedan N (2010) Effect of whey protein properties of gutted Kilka during frozen storage. Iran J Fish Sci 9(3):412–421

    Google Scholar 

  • Hassan B, Chatha SAS, Hussain AI, Zia KM, Naseem A (2018) Recent advances on polysaccharides, lipids and protein based edible films and coatings: a review. Int J Biol Macromol 109:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Hassani F, Garousi F, Javanmard M (2012) Edible coating based on whey protein concentrate-rice bran oil to maintain the physical and chemical properties of the kiwifruit. Trakia J Sci 10(1):26–34

    Google Scholar 

  • Hernandez-Munoz P, Kanavouras A, Lagaron JM, Gavara R (2005) Development and characterization of films based on chemically cross-linked gliadins. J Agric Food Chem 53:8216–8223

    Article  CAS  PubMed  Google Scholar 

  • Hong YH, Lim GO, Song KB (2009) Physical properties of Gelidium corneum - gelatin blend films containing grapefruit seed extract or green tea extract andits application in the packaging of pork loins. Journal of Food Science 74(1):6–10

    Google Scholar 

  • Janjarasskul T, Krochta JM (2010) Edible packaging materials. Annu Rev Food Sci Technol 1:415–448

    Article  CAS  PubMed  Google Scholar 

  • Janjarasskul T, Rauch DJ, McCarthy KL, Krochta JM (2014) Barrier and tensile properties of whey protein-candelilla wax film/sheet. LWT Food Sci Technol 56(2):377–382

    Article  CAS  Google Scholar 

  • Jauregi P, Welderufael FT (2010) Added-value protein products from whey. Forum Nutr 9(4):13–23

    CAS  Google Scholar 

  • Javanmard M, Golestan L (2008) Effect of olive oil and glycerol on physical properties of whey protein concentrate films. J Food Process Eng 31(5):628–639

    Article  Google Scholar 

  • Jenssen H, Hancock REW (2009) Antimicrobial properties of lactoferrin. Biochimie 91(1):19–29

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Hussain MA, Cheng J, Jiang Z, Geng H, Sun Y, Sun C, Hou J (2018) Effect of heat treatment on physicochemical and emulsifying properties of polymerized whey protein concentrate and polymerized whey proteinisolate. LWT Food Sci Technol 98:134–114

    Article  CAS  Google Scholar 

  • Jianga S, Zhang T, Song Y, Qian F, Tuo Y, Mu G (2019) Mechanical properties of whey protein concentrate basedfilm improvedby the coexistence of nanocrystalline cellulose and transglutaminase. Int J Biol Macromol 126:1266–1272

    Article  CAS  Google Scholar 

  • Jiménez Marco A, Sánchez González L, Desobry S, Chiralt Boix MA, Arab Tehrany E (2014) Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocoll 35:159–169

    Article  CAS  Google Scholar 

  • Jiménez-Flores R, Ye A, Singh H (2005) Interactions of whey proteins during heat treatment of oil-in-water emulsions formed with whey protein isolate and hydroxylated lecithin. J Agric Food Chem 53:4213–4219

    Article  PubMed  CAS  Google Scholar 

  • Jones EM, Smart A, Bloomberg G, Burgess L, Millar MR (1994) Lactoferricin, a new antimicrobial peptide. J Appl Bacteriol 77:208–214

    Article  CAS  PubMed  Google Scholar 

  • Jooyandeh H (2011) Whey protein films and coatings: review. Pak J Nutr 10(3):296–301

    Article  CAS  Google Scholar 

  • Kechichian V, Ditchfield C, Veiga-Santos P, Tadini CC (2010) Natural antimicrobial ingredients incorporated in biodegradable films based oncassava starch. LWT Food Sci Technol 43(7):1088–1094

    Article  CAS  Google Scholar 

  • Khan MKI, Schutyser MAI, Schroën K, Boom R (2012a) The potential of electrospraying for hydrophobic film coating on foods. J Food Eng 108(3):410–416

    Article  CAS  Google Scholar 

  • Khan MKI, Mujawar LH, Schutyser MAI, Schroën K, Boom R (2012b) Deposition of thin lipid films prepared by electrospraying. Food Bioproc Tech 11(6):1–9

    Google Scholar 

  • Khan MKI, Nazir A, Maan AA (2017) Electrospraying: a novel technique for efficient coating of foods. Food Eng Rev 9(2):112–119

    Article  CAS  Google Scholar 

  • Kim SJ, Ustunol Z (2001) Solubility and moisture sorption isotherms of whey-protein-based edible films as influenced by lipid and plasticizer incorporation. J Agric Food Chem 9:4388–4391

    Article  CAS  Google Scholar 

  • Ko S, Janes ME, Hettiarachchy NS, Johnson MG (2001) Physical and chemical properties of edible films containing nisin and their action against Listeria monocytogenes. J Food Sci 66:1006–1011

    Article  CAS  Google Scholar 

  • Kodad O, Estopañán G, Juan T, Alonso JM, Espiau MT, Company RS (2014) Oil content, fatty acid composition and tocopherol concentration in the Spanish almond genebank collection. Sci Hortic 177(10):99–107

    Article  CAS  Google Scholar 

  • Kokoszka S, Debeaufort F, Lenart A, Voilley A (2010) Liquid and vapour water transfer through whey protein/lipid emulsion films. J Sci Food Agric 90(10):1673–1680

    Article  CAS  PubMed  Google Scholar 

  • Kraśniewska K, Gniewosz M (2012) substances with antibacterial activity in edible films-a review. Pol J Food Nutr Sci 62(4):199–206

    Article  CAS  Google Scholar 

  • Kristo E, Koutsoumanis KP, Biliaderis CG (2008) Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocoll 22:373–386

    Article  CAS  Google Scholar 

  • Krochta JM (2002) Proteins as raw materials for films and coatings: definitions, current status, and opportunities. In: Gennadios A (ed) Protein-based films and coatings. CRC Press, Boca Raton, pp 1–41

    Google Scholar 

  • Kuorwel KK, Cran MJ, Orbell JD, Buddhadasa S, Bigger SW (2015) Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Compr Rev Food Sci Food Saf 14(4):411–430

    Article  CAS  Google Scholar 

  • Kurek M, Galus S, Debeaufort F (2014) Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packag Shelf 1(1):56–67

    Article  Google Scholar 

  • Leuangsukrerk M, Phupoksakul T, Tananuwong K, Borompichaichartkul C, Janjarasskul T (2014) Properties of konjac glucomannanewhey protein isolate blend films. LWT Food Sci Technol 59:94–100

    Article  CAS  Google Scholar 

  • Li M, Ma Y, Cui J (2014) Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWT Food Sci Technol 59:49–58

    Article  CAS  Google Scholar 

  • Liceaga-Gesualdo A, Li-Chan ECY, Skura BJ (2001) Antimicrobial effect of lactoferrin digest on spores of a Penicillium sp. isolated from bottled water. Food Res Int 34:501–506

    Article  CAS  Google Scholar 

  • Lin SY, Krochta JM (2005) Whey protein coating efficiency on surfactant modified hydrophobic surfaces. J Agric Food Chem 53:5018–5023

    Article  CAS  PubMed  Google Scholar 

  • Luecha J, Sozer N, Kokini JL (2010) Synthesis and properties of corn zein/montmorillonite nanocomposite films. J Mater Sci 45(13):3529–3537

    Article  CAS  Google Scholar 

  • Marquez GR, Di Pierro P, Esposito M, Mariniello L, Porta R (2012) Application of transglutaminase-crosslinked whey protein/pectin films as water barrier coatings in fried and baked foods. Food Bioproc Tech 7(2):447–455

    Article  CAS  Google Scholar 

  • Marsh K, Bugusu B (2007) Food packaging-roles, materials, and environmental issues. J Food Sci 72:39–55

    Article  CAS  Google Scholar 

  • Martínez ML, Labuckas DO, Lamarque AL, Maestri DM (2010) Walnut (Juglans regia L.): genetic resources, chemistry, by‐products. J Sci Food Agric 90(12):1959–1967

    PubMed  Google Scholar 

  • Mathews AP, Dufresne A (2002) Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules 3:1101–1108

    Article  CAS  Google Scholar 

  • Matsakidoua A, Biliaderis CG, Kiosseogloua V (2013) Preparation and characterization of composite sodium caseinate edible films incorporating naturally emulsified oil bodies. Food Hydrocoll 30:232–240

    Article  CAS  Google Scholar 

  • McHugh TH, Krochta JM (1994) Sorbitol vs. glycerol plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. J Agric Food Chem 42:41–45

    Article  Google Scholar 

  • Mehyar GF, Al-Isamil KM, Al-Ghizzawi HM, Holley RA (2014) Stability of cardamom (Elettaria Cardamomum) essential oil in microcapsules made of whey protein isolate, guar gum, and carrageenan. J Food Sci 79(10):1939–1949

    Article  CAS  Google Scholar 

  • Mendes de Souza P, Fernández A, López-Carballo G, Gavara R, Hernández-Muñoz P (2010) Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocoll 24:300–306

    Article  CAS  Google Scholar 

  • Miller KS, Upadhyaya SK, Krochta JM (1998) Permeability of d‐limonene in whey protein films. J Food Sci 63(2):244–247

    Article  CAS  Google Scholar 

  • Min S, Krochta JM (2005) Inhibiton of Penicillium commune by edible whey protein films incorporating lactoferrin, lactoferrin hydrolysate, and lactoperoxidase systems. J Food Sci 70(2):87–94

    Article  Google Scholar 

  • Min S, Harris LJ, Krochta JM (2005) Antimicrobial Effects of lactoferrin, lysozyme, and the lactoperoxidase system and edible whey protein films incorporating the lactoperoxidase system agains Salmonella enterica and Escherichia coli O157:H7. J Food Sci 70(7):332–338

    Article  Google Scholar 

  • Min S, Rumsey TR, Krochta JM (2008) Diffusion of the antimicrobial lysozyme from a whey protein coating on smoked salmon. J Food Eng 84:39–47

    Article  CAS  Google Scholar 

  • Mishra J, Bohr A, Rades T, Grohganz H, Löbmann K (2019) Whey proteins as stabilizers in amorphous solid dispersions. Eur J Pharm Sci 128:144–151

    Article  CAS  PubMed  Google Scholar 

  • Monedero FM, Fabra MJ, Talens P, Chiralt A (2010) Effect of calcium and sodium caseinates on physical characteristics of soy protein isolate-lipid films. J Food Eng 97:228–234

    Article  CAS  Google Scholar 

  • Moreira MR, Ponce AG, Del Valle CE, Roura SI (2005) Inhibitory parameters of essential oils to reduce a foodborne pathogen. LWT Food Sci Technol 38:565–570

    Article  CAS  Google Scholar 

  • Moreira MDR, Pereda M, Marcovich N, Roura SI (2011) Antimicrobial effectiveness of bioactive packaging materials fromedible chitosan and casein polymers: assessment on carrot, cheese, and salami. J Food Sci 76(1):54–63

    Article  CAS  Google Scholar 

  • Moreno O, Pastor C, Muller J, Atares L, Gonzalez C, Chiralt A (2014) Physical and bioactive properties of corn starch–buttermilk edible films. J Food Eng 141:27–36

    Article  CAS  Google Scholar 

  • Moreno O, Atares L, Chiralt A (2015) Effect of the incorporation of antimicrobial/antioxidant proteins on the properties of potato starch films. Carbohydr Polym 133:353–364

    Article  CAS  PubMed  Google Scholar 

  • Muñoz LA, Cobos A, Diaz O, Aguilera JM (2012a) Chia seeds: microstructure, mucilage extraction and hydration. J Food Eng 108(1):216–224

    Article  CAS  Google Scholar 

  • Muñoz LA, Aguilera JM, Rodriguez-Turienzo L, Cobos A, Diaz O (2012b) Characterization and microstructure of films made from mucilage of Salvia hispanica and whey protein concentrate. J Food Eng 111:511–518

    Article  CAS  Google Scholar 

  • Murrieta-Martínez CL, Soto-Valdez H, Pacheco-Aguilar R, Torres-Arreola W, Rodríguez-Felix F, Márquez Ríos E (2018) Edible protein films: sources and behavior. Packag Technol Sci 31:113–122

    Article  CAS  Google Scholar 

  • Naidu AS (2000) Lactoferrin. Natural food antimicrobial systems. CRC Press, Boca Raton, pp 19–102

    Book  Google Scholar 

  • Nicolás P, Ferreira ML, Lassalle V (2019) A review of magnetic separation of whey proteins and potential applicationto whey proteins recovery, isolation and utilization. J Food Eng 246:7–15

    Article  CAS  Google Scholar 

  • O’Donnell K, Kearsley MW (2012) Part Four: other sweeteners trehalose. In: O’Donnell K, Kearsley MW (eds) Sweeteners and sugar alternatives in food technology, 2nd edn. Blackwell Publishing, Oxford, pp 417–431

    Chapter  Google Scholar 

  • Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M (2004) Antimicrobial and antioxidant effects of milk protein-based film containing essential oils for the preservation of whole beef muscle. J Agric Food Chem 52(18):5598–5605

    Article  CAS  PubMed  Google Scholar 

  • Padrão J, Gonçalves S, Silva JP, Sencadas V, Lanceros-Mendez S, Pinheiro AC, Vicente AA, Rodrigues LR, Dourado F (2016) Bacterial cellulose-lactoferrin as an antimicrobial edible packaging. Food Hydrocoll 58:126–140

    Article  CAS  Google Scholar 

  • Pankaj SK, Bueno-Ferrer C, Misra NN, O’Neill L, Tiwari BK, Bourke P, Cullen PJ (2014) Physicochemical characterization of plasma-treated sodium caseinate film. Food Res Int 66:438–444

    Article  CAS  Google Scholar 

  • Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92

    Article  CAS  PubMed  Google Scholar 

  • Park HJ (1999) Development of advanced edible coatings for fruits.Trends. Food Sci Technol 10(8):254–260

    Article  CAS  Google Scholar 

  • Patel S (2015) Emerging trends in nutraceutical applications of whey proteinand its derivatives. J Food Sci Technol 52(11):6847–6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne KD, Davidson PM, Oliver SP, Christen GL (1990) Influence of bovine lactoferrin on the growth of Listeria monocytogenes. J Food Prot 53:468–472

    Article  CAS  PubMed  Google Scholar 

  • Perdones A, Sanchez-Gonzalez L, Chiralt A, Vargas M (2012) Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol Technol 70:32–41

    Article  CAS  Google Scholar 

  • Perez-Gago M, Krochta J (2001) Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films. J Food Sci 66(5):705–710

    Article  CAS  Google Scholar 

  • Perez-Gago MB, Krochta JM (2002) Formation and properties of whey protein films and coatings. In: Gennadios A (ed) Protein-based films and coatings. CRC Press, Boca Raton, pp 159–180

    Google Scholar 

  • Perez-Gago MB, Serra M, Alonso M, Mateos M (2005) Effect of whey protein-and hydroxypropyl methylcellulose-based edible composite coatings on color change of fresh-cut apples. Postharvest Biol Technol 36(1):77–85

    Article  CAS  Google Scholar 

  • Pérez-Masiá R, López-Nicolás R, Periago M, Ros G, Lagaron JM, López-Rubio A (2015) Encapsulation of folic acid in food hydrocolloids through nanospray drying and electro spraying for nutraceutical applications. Food Chem 168:124–133

    Article  PubMed  CAS  Google Scholar 

  • Perez LM, Piccirilli GN, Delorenzi NJ, Verdini RA (2016) Effect of different combinations of glycerol and/or trehalose on physical and structural properties of whey protein concentrate-based edible films. Food Hydrocolloids 56:352–359

    Google Scholar 

  • Piccirilli GN, Soazo M, Pérez LM, Delorenzi NJ, Verdini RA (2019) Effect of storage conditions on the physicochemical characteristics of ediblefilms based on whey protein concentrate and liquid smoke. Food Hydrocoll 87:221–228

    Article  CAS  Google Scholar 

  • Pintado CM, Ferreira MASS, Sousa I (2009) Properties of whey protein-based films containing organic acids and nisin to control Listeria monocytogenes. J Food Prot 72(9):1891–1896

    Article  PubMed  Google Scholar 

  • Pintado CM, Ferreira MASS, Sousa I (2010) Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin. Food Control 21:240–246

    Article  CAS  Google Scholar 

  • Popodopoulou C, Sakkas H, Arvanitidou M, Leveidiotou S (2007) The antimicrobial activity of origanum oil, basil oil, chamomile blue oil, tea tree oil and thyme oil against gram-positive bacterial strains. Planta Med 73:166

    Google Scholar 

  • Ramos ÓL, Fernandes JC, Silva SI, Pintado ME, Malcata FX (2012) Edible films and coatings from whey proteins: a review on formulation, and on mechanical and bioactive properties. Crit Rev Food Sci Nutr 52(6):533–552

    Article  CAS  PubMed  Google Scholar 

  • Ramos OL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, Vicente AA, Poças MF, Pintado ME, Malcata FX (2013) Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll 30(1):110–122

    Article  CAS  Google Scholar 

  • Regalado C, Perez-Perez C, Lara-Cortes E, Garcia-Almendarez B (2006) Whey protein based edible food packaging films and coatings. Adv Agric Food Biotechnol 661:237–261

    Google Scholar 

  • Reiter B, Oram JD (1986) Iron and vanadium requirements of lactic acid streptococci. J Dairy Res 35:67–69

    Article  Google Scholar 

  • Reyes RE, Manjarrez HA, Drago ME (2005) El hierro y la virulenciabacteriana. Enf Inf Microbiol 5:104–107

    Google Scholar 

  • Rezvania E, Schleininga G, Sumen G, Taherian A (2013) Assessment of physical and mechanical properties of sodium caseinate and stearic acid based film-forming emulsions and edible films. J Food Eng 116:598–605

    Article  CAS  Google Scholar 

  • Rodriguez-Turienzo L, Cobos A, Moreno V, Caride A, Vieites JM, Diaz O (2011) Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): influence of the plasticiser and the moment of coating on quality preservation. Food Chem 128:187–194

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Turienzo L, Cobos A, Diaz O (2013) Effects of microbial transglutaminase added edible coatings based on heated or ultrasound-treated whey proteins in physical and chemical parameters of frozen Atlantic salmon (Salmo salar). J Food Eng 119:433–438

    Article  CAS  Google Scholar 

  • Rolle RS, Chism GW (1987) Physiological consequences of minimally processed fruits and vegetables. J Food Qual 10(3):157–177

    Article  Google Scholar 

  • Rubilar JF, Zúñigab RN, Osorioc F, Pedreschi F (2015) Physical properties of emulsion-based hydroxypropylmethylcellulose/whey protein isolate (HPMC/WPI) edible films. Carbohydr Polym 123:27–38

    Article  CAS  PubMed  Google Scholar 

  • Russo P, Pia Arena M, Fiocco D, Capozzi V, Drider D, Spano G (2017) Lactobacillus plantarum with broad antifungal activity: a promising approach to increase safety and shelf-life of cereal-based products. Int J Food Microbiol 247:48–54

    Article  CAS  PubMed  Google Scholar 

  • Sabato SF, Nakamurakare N, Sobral PJA (2007) Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins. Radiat Phys Chem 76:1862–1865

    Article  CAS  Google Scholar 

  • Sabzevari O, Heidari MR, Dadollahi Z, Vahedian M, Vafazadeh J, Hosseini SA (2006) Effect of methanolic extract of Matricaria chamomile L. on seizures induced by picrotoxin in mice. Acta Pharmacol Sin 27:104

    Google Scholar 

  • Schmid M (2013) Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein isolate and glycerol. Materials 6:3254–3269

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmid M, Dallmann K, Bugnicourt E, Cordoni D, Wild F, Lazzeri A, Noller K (2012) Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Int J Polym Sci 2012:1–7

    Google Scholar 

  • Schmid M, Hammann F, Winkler H (2013) Technofunctional properties of films made from ethylene vinyl acetate/whey protein isolate compounds. Packag Technol Sci 27(7):521–533

    Article  CAS  Google Scholar 

  • Schmid M, Krimmel B, Grupa U, Noller K (2014) Effects of thermally induced denaturation on technological‐functional properties of whey protein isolate-based films. J Dairy Sci 97(9):5315–5327

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Reichert K, Hammann F, Stabler A (2015) Storage time-dependent alteration of molecular interaction–property relationships of whey protein isolate-based filmsand coatings. J Mater Sci 50:4396–4404

    Article  CAS  Google Scholar 

  • Selke SEM, Culter JD, Hernandez RJ (2004) Plastic packaging: properties, processing, applications and regulations, 2nd edn. Hanser Gardners, Cincinnati

    Google Scholar 

  • Seydim AC, Sarikus G (2006) Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Res Int 39:639–644

    Article  CAS  Google Scholar 

  • Shaw NB, Monahan FJ, Riordan EDO, Osullivan M (2002) Effect of soya oil and glycerol on physical properties of composite WPI films. J Food Eng 51(4):299–304

    Article  Google Scholar 

  • Shit SC, Shah PM (2014) Edible polymers: challenges and opportunities. J Polym 2014:1–13

    Article  CAS  Google Scholar 

  • Silva KS, Mauro MA, Gonçalves MP, Rocha CMR (2016) Synergistic interactions of locust bean gum with whey proteins: effecton physicochemical and microstructural properties of wheyprotein-based films. Food Hydrocoll 54:179–188

    Article  CAS  Google Scholar 

  • Silva KS, Fonseca TMR, Amado LR, Mauro MA (2018) Physicochemical and microstructural properties of whey protein isolate-basedfilms with addition of pectin. Food Packag Shelf 16:122–128

    Article  Google Scholar 

  • Soazo M, Perez LM, Rubiolo AC, Verdini RA (2013) Effect of freezing on physical properties of whey protein emulsion films. Food Hydrocoll 31(2):256–263

    Article  CAS  Google Scholar 

  • Soazo M, Perez LM, Rubiolo AC, Verdini RA (2015) Prefreezing application of whey protein-based edible coating to maintain quality attributes of strawberries. Int J Food Sci Technol 50:605–611

    Article  CAS  Google Scholar 

  • Soliman EA, Tawfik MS, El-Sayed H, Moharram YG (2007) Preparation and characterization of soy protein based edible/biodegradable films. Am J Food Technol 2:462–476

    Article  CAS  Google Scholar 

  • Soukoulis C, Behboudi-Jobbehdar S, Macnaughtan W, Parmenter C, Fisk I (2017) Stability of Lactobacillus rhamnosus GG incorporated in edible films: impact of anionic biopolymers and whey protein concentrate. Food Hydrocoll 70:345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spalatelu C (2012) Biotechnological valorisation of whey. Innov Rom Food Biotechnol 10(1):1–8

    CAS  Google Scholar 

  • Su G, Cai H, Zhou C, Wang Z (2007) formation of edible soybean and soybean-complex protein films by a cross-linking treatment with a new streptomyces transglutaminase. Food Technol Biotechnol 45(4):381–388

    CAS  Google Scholar 

  • Talens P, Krochta JM (2005) Plasticizing effects of beeswax and carnauba wax on tensile and water vapor permeability properties of whey protein films. J Food Sci 70(3):55–58

    Google Scholar 

  • Tien CL, Vachon C, Mateescu MA, Lacroix M (2001) Milk protein coatings prevent oxidative browning of apples and potatoes. J Food Sci 66:512–516

    Article  Google Scholar 

  • Tippetts M, Martini S, Brothersen C, McMahon DJ (2012) Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems. J Dairy Sci 95:4768–4774

    Article  CAS  PubMed  Google Scholar 

  • Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74(12):4137–4142

    Article  CAS  PubMed  Google Scholar 

  • Tonyali B, Cikrikci S, Oztop MH (2018) Physicochemical and microstructural characterization of gum tragacanthadded whey protein basedfilms. Food Res Int 105:1–9

    Article  CAS  PubMed  Google Scholar 

  • Trinetta V (2016) Definition and function of food packaging, reference module in food science, principal scientist. ECOLAB R&D Campus, Eagan

    Google Scholar 

  • Tsai MJ, Weng YM (2019) Novel edible composite films fabricated with whey protein isolate and zein: preparation and physicochemical property evaluation. LWT Food Sci Technol 101:567–574

    Article  CAS  Google Scholar 

  • Vonasek E, Le P, Nitin N (2014) Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydrocoll 37:7–13

    Article  CAS  Google Scholar 

  • Wagh YR, Pushpadass HA, Emerald FME, Nath BS (2014) Preparation and characterization of milk protein films and their application for packaging of cheddar cheese. J Food Sci Technol 51(12):3767–3775

    Article  CAS  PubMed  Google Scholar 

  • Wakai M, Almenar E (2015) Effect of the presence of montmorillonite on the solubility of wheyprotein isolatefilms in food model systems with differentcompositions and pH. Food Hydrocoll 43:612–621

    Article  CAS  Google Scholar 

  • Wang J, Shang J, Ren F, Leng X (2010) Study of the physical properties of whey protein: sericin protein-blended edible films. Eur Food Res Technol 231:109–116

    Article  CAS  Google Scholar 

  • Wang J, Xia XM, Wang HY, Li PP, Wang KY (2013a) Inhibitory effect of lactoferrin against gray mould on tomato plants caused by Botrytis cinerea and possible mechanisms of action. Int J Food Microbiol 161:151–157

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sun Y, Chen C, Sun Z, Zhou YC, Shen FD (2013b) Genome shuffling of Lactobacillus plantarum for improving antifungal activity. Food Control 32:341–347

    Article  CAS  Google Scholar 

  • Wei MK, Wu QP, Huang Q, Wu JL, Zhang JM (2008) Plasma membrane damage to Candida albicans caused by chlorine dioxide (ClO2). Lett Appl Microbiol 47:67–73

    Article  CAS  PubMed  Google Scholar 

  • Wihodo M, Moraru C (2013) Physical and chemicalmethods used to enhance the structure and properties of protein films: a review. J Food Eng 114(3):292–302

    Article  CAS  Google Scholar 

  • Wisniewski M, Droby S, Norelli J, Liu J, Schena L (2016) Alternative management technologies for postharvest disease control: the journey from simplicity to complexity. Postharvest Biol Technol 122:3–10

    Article  Google Scholar 

  • Zhou X, Hua X, Huang L, Xu Y (2019) Bio-utilization of cheese manufacturing wastes (cheese whey powder) forbioethanol and specific product (galactonic acid) production via a two-stepbioprocess. Bioresour Technol 272:70–76

    Article  CAS  PubMed  Google Scholar 

  • Zinoviadou KG, Koutsoumanis KP, Biliaderis CG (2009) Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci 82:338–345

    Article  CAS  PubMed  Google Scholar 

  • Zinoviadou KG, Koutsoumanis KP, Biliaderis CG (2010) Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocoll 24:49–59

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karaca, O.B., Oluk, C.A., Taşpinar, T., Güven, M. (2019). New Concept in Packaging: Milk Protein Edible Films. In: Malik, A., Erginkaya, Z., Erten, H. (eds) Health and Safety Aspects of Food Processing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-24903-8_19

Download citation

Publish with us

Policies and ethics