Skip to main content

Phytochemicals of Whole Grains and Effects on Health

  • Chapter
  • First Online:
Health and Safety Aspects of Food Processing Technologies

Abstract

Grains are important raw materials for staple food products in the diet. Since they are not only a good source of carbohydrate content, provides for daily energy intake, but also protein, vitamins B-complex source for an adequate and balanced diet. Moreover, in recent times, it was elucidated that whole grains involve several bioactive compounds namely phytochemicals. Phytochemicals are non-nutritive dietary bioactive compounds and secondary metabolites generated by plants to protect themselves against environmental stress or threats. Whole grain phytochemicals comprise of dietary fiber as β-glucan, arabinoxylan, inulin, resistant starch; phenolic compounds as phenolic acids, anthocyanins, tocols (tocotrienols and tocopherols), lignans, alkylresorcinols, carotenoids (lutein, zeaxanthin, etc.) and other phytochemicals as phytic acid, phytosterols, γ-oryzanol, avenanthramides, benzoxazinoids. Phytochemicals could improve health and/or hinder some chronic diseases by means of whose antioxidant, anticarcinogenic, antimicrobial, antimutagenic, and anti-inflammatory activities. Epidemiological studies support that consumption of whole grains and food products are related to decreasing the risk of coronary heart disease, type 2 diabetes, obesity, oxidative stress, and some cancer types. The phytochemicals are mainly present in outer layers of grains as germ and bran parts. For this reason, the content of whole grains phytochemical is higher than refined ones owing to the milling process. In some cases, the processing negatively affects the bioactive components but there are contradictory remarks and studies about the stability of phytochemicals during processing. This chapter will briefly discuss not only phytochemicals of whole grains and effects on health but also the effect of processing on whole grain phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AACC International (2000) American Association of Cereal Chemists, Whole grains definition. AACC International, St. Paul, MN

    Google Scholar 

  • Abdel-Aal ESM, Young JC, Wood PJ et al (2002) Einkorn: a potential candidate for developing high lutein wheat. Cereal Chem 79(3):455–457

    CAS  Google Scholar 

  • Abuajah CI, Ogbonna AC, Osuji CM (2015) Functional components and medicinal properties of food: a review. J Food Sci Technol 52(5):2522–2529

    CAS  PubMed  Google Scholar 

  • Ahmad A, Anjum FM, Zahoor T et al (2012) Beta-glucan: a valuable functional ingredient in foods. Crit Rev Food Sci Nutr 52(3):201–212

    CAS  PubMed  Google Scholar 

  • Alam A, Sernia C, Brown L (2013) Ferulic acid improves cardiovascular and kidney structure and function in hypertensive rats. J Cardiovasc Pharmacol 61(3):240–249

    CAS  PubMed  Google Scholar 

  • Alverez-Jubete L, Tiwari U (2013) Stability of phytochemicals during grain processing. In: Tiwari BK, Brunton NP, Brennan CS (eds) Handbook of plant food phytochemicals: sources, stability and extraction, 1st edn. Wiley-Blackwell, Chichester, UK, pp 303–331

    Google Scholar 

  • Anderson JW (2003) Whole grains protect against atherosclerotic cardiovascular disease. Proc Nutr Soc 62(1):135–142

    CAS  PubMed  Google Scholar 

  • Anderson JW (2004) Whole grains and coronary heart disease: the whole kernel of truth. Am J Clin Nutr 80(6):1459–1460

    CAS  PubMed  Google Scholar 

  • Anderson JW, Hanna TJ, Peng X et al (2000) Whole grain foods and heart disease risk. J Am Coll Nutr 19(3):291S–299S

    CAS  PubMed  Google Scholar 

  • Andersson U, Dey ES, Holm C, Degerman E (2011). Rye bran alkylresorcinols suppress adipocyte lipolysis and hormone-sensitive lipase activity. Food Funct 55:S290–S293. https://doi.org/10.1002/mnfr.201100231

  • Anonymous (2004) Definition of a whole grain. https://wholegrainscouncil.org/definition-whole-grain. Accessed Aug 2018

  • Anonymous (2018a) Comfortable cereal markets in 2018/19, early prospects point to higher wheat production in 2019. http://wwwfaoorg/worldfoodsituation/csdb/en/. Accessed Oct 2018

  • Anonymous (2018b) Health promotion and disease prevention knowledge gateway–whole grain. https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/whole-grain. Accessed Nov 2018

  • Aune D, Chan DSM, Greenwood DC, Vieira AR et al (2012) Dietary fiber and breast cancer risk: a systematic review and meta-analysis of prospective studies. Ann Oncol 23(6):1394–1402

    CAS  PubMed  Google Scholar 

  • Bakken T, Braaten T, Olsen A, Kyrø C et al (2016) Consumption of whole-grain bread and risk of colorectal cancer among Norwegian women (The Nowac study). Nutrients 8(1):40

    PubMed Central  Google Scholar 

  • Bartłomiej S, Justyna RK, Ewa N (2012) Bioactive compounds in cereal grains-occurrence, structure, technological significance and nutritional benefits-a review. Food Sci Technol Int 18(6):559–568

    PubMed  Google Scholar 

  • Belobrajdic DP, Bird AR (2013) The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr J 12:62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borneo R, León AE (2012) Whole grain cereals: functional components and health benefits. Food Funct 3(2):110–119

    CAS  PubMed  Google Scholar 

  • Brenna OV, Berardo N (2004) Application of near-infrared reflectance spectroscopy (NIRS) to the evaluation of carotenoids content in maize. J Agric Food Chem 52(18):5577–5582

    CAS  PubMed  Google Scholar 

  • Brennan CS, Cleary LJ (2005) The potential use of cereal (1→3,1→4)-β-D-glucans as functional food ingredients. J Cereal Sci 42(1):1–13

    CAS  Google Scholar 

  • Călinoiu LF, Vodnar DC (2018) Whole grains and phenolic acids: a review on bioactivity, functionality, health benefits and bioavailability. Nutrients 10(11):1615

    PubMed Central  Google Scholar 

  • Charalampopoulos D, Wang R, Pandiella SS, Webb C (2002) Application of cereals and cereal components in functional foods: a review. Int J Food Microbiol 79(1–2):131–141

    CAS  PubMed  Google Scholar 

  • Ciccone MM, Cortese F, Gesualdo M et al (2013) Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediat Inflamm 2013:1–11

    Google Scholar 

  • Craig WJ (1997) Phytochemicals: guardians of our health. J Am Diet Assoc 97(10 Suppl):S199–S204

    CAS  PubMed  Google Scholar 

  • Craig W, Beck L (1999) Phytochemicals: health protective effects. Can J Diet Pract Res 60(2):78–84

    PubMed  Google Scholar 

  • Cui SW, Wu Y, Ding H (2013) The range of dietary fibre ingredients and a comparison of their technical functionality. In: Delcour JA, Poutanen K (eds) Fibre-rich and whole grain. Woodhead Publishing, Cambridge, UK, pp 96–119

    Google Scholar 

  • Cummings J, Mann J, Nishida C et al (2009) Dietary fibre: an agreed definition. Lancet 373(9661):365–366

    CAS  PubMed  Google Scholar 

  • De Munter JSL, Hu FB, Spiegelman D et al (2007) Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 4(8):1385–1395

    Google Scholar 

  • Dewanto V, Wu X, Liu RH (2002) Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50(17):4959–4964

    CAS  PubMed  Google Scholar 

  • Di Pietro N, Di Tomo P, Pandolfi A (2016) Carotenoids in cardiovascular disease prevention. JSM Atheroscler 1(1):1002

    Google Scholar 

  • Dost K, Tokul O (2005) Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography. Anal Chim Acta 558(1–29):22–27

    Google Scholar 

  • EFSA (2010) European Food Safety Authority, Panel on Dietetic Products, Nutrition and Allergies (NDA): Scientific Opinion on the substantiation of a health claim related to whole grain. EFSA J 8(10):1766. https://doi.org/10.2903/j.efsa.2010.1766

  • Fardet A (2010) New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 23(1):65–134

    CAS  PubMed  Google Scholar 

  • Fardet A, Rock E, Rémésy C (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci 48(2):258–276

    CAS  Google Scholar 

  • Farvid MS, Cho E, Eliassen AH et al (2016) Lifetime grain consumption and breast cancer risk. Breast Cancer Res Treat 159(2):335–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Febles CI, Arias A, Hardisson A et al (2002) Phytic acid level in wheat flours. J Cereal Sci 36(1):19–23

    CAS  Google Scholar 

  • Ferruzzi MG, Jonnalagadda SS, Liu S et al (2014) Developing a standard definition of whole-grain foods for dietary recommendations: summary report of a multidisciplinary expert roundtable discussion. Adv Nutr 5(2):164–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freeland KR, Anderson GH, Wolever TMS (2009) Acute effects of dietary fibre and glycaemic carbohydrate on appetite and food intake in healthy males. Appetite 52(1):58–64

    CAS  PubMed  Google Scholar 

  • Frølich W, Åman P (2010) Whole grain for whom and why? Food Nutr Res 54:5056

    Google Scholar 

  • Gammone MA, Riccioni G, D’Orazio N (2015) Carotenoids: potential allies of cardiovascular health? Food Nutr Res 59:26762

    PubMed  Google Scholar 

  • Gangopadhyay N, Hossain MB, Rai DK et al (2015) A review of extraction and analysis of bioactives in oat and barley and scope for use of novel food processing technologies. Molecules 20(6):10884–10909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gani A, Wani SM, Masoodi FA (2012) Whole-grain cereal bioactive compounds and their health benefits: a review. J Food Process Technol 3(3):146

    Google Scholar 

  • Gibson S, Ashwell M, Van der Kamp J-W (2013) Cereal foods and health – new results and science-based nutrition guidelines. Complete Nutr 13(6):26–28

    Google Scholar 

  • Giordano P, Scicchitano P, Locorotondo M et al (2012) Carotenoids and cardiovascular risk. Curr Pharm Des 18(34):5577–5589

    CAS  PubMed  Google Scholar 

  • Harland JI, Garton LE (2008) Whole-grain intake as a marker of healthy body weight and adiposity. Public Health Nutr 11(6):554–563

    PubMed  Google Scholar 

  • Harris KA, Kris-Etherton PM (2010) Effects of whole grains on coronary heart disease risk. Curr Atheroscler Rep 12(6):368–736

    CAS  PubMed  Google Scholar 

  • Heinonen SM, Nurmi T, Adlercreutz H (2001) The occurrence of new mammalian lignan precursors in whole grains. In: Liukkonen K, Kuokka A, Poutanen K (eds) Whole grain and human health symposium 213. WTT Technical Research Center of Finland, Finland, pp 49–50

    Google Scholar 

  • Hemery Y, Rouau X, Lullien-Pellerin V et al (2007) Dry processes to develop wheat fractions and products with enhanced nutritional quality. J Cereal Sci 46(3):327–347

    CAS  Google Scholar 

  • Higgins JA, Higbee DR, Donahoo WT et al (2004) Resistant starch consumption promotes lipid oxidation. Nutr Metab 1(1):8–19

    Google Scholar 

  • Jacobs DR, Gallagher DD (2004) Whole grain intake and cardiovascular disease and whole grain intake and diabetes: a review. Curr Atheroscler Rep 6(6):415–423

    PubMed  Google Scholar 

  • Jones JM, Engleson J (2010) Whole grains: benefits and challenges. Annu Rev Food Sci Technol 1:19–40

    PubMed  Google Scholar 

  • Jones JM, Adams J, Harriman C (2015) Nutritional impacts of different whole grain milling techniques: a review of milling practices and existing data. Cereal Foods World 60(3):130–139

    Google Scholar 

  • Juliano C, Cossu M, Alamanni MC et al (2005) Antioxidant activity of gamma-oryzanol: mechanism of action and its effect on oxidative stability of pharmaceutical oils. Int J Pharm 299(1–2):146–154

    CAS  PubMed  Google Scholar 

  • Karl JP, Saltzman E (2012) The role of whole grains in body weight regulation. Adv Nutr 3(5):697–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong F, Singh RP (2008) Disintegration of solid foods in human stomach. J Food Sci 73(5):R67–R80

    CAS  PubMed  Google Scholar 

  • Kris-Etherton PM, Hecker KD, Bonanome A et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(9):71S–88S

    CAS  PubMed  Google Scholar 

  • Kruk J, Aboul-Enein B, Bernstein J et al (2017) Dietary alkylresorcinols and cancer prevention: a systematic review. Eur Food Res Technol 243(10):1693–1710

    CAS  Google Scholar 

  • Kulczyński B, Gramza-Michałowska A, Kobus-Cisowska J et al (2017) The role of carotenoids in the prevention and treatment of cardiovascular disease – current state of knowledge. J Funct Foods 38:45–65

    Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS et al (2012) Dietary roles of non-starch polysaccharides in human nutrition: a review. Crit Rev Food Sci Nutr 52(10):899–935

    CAS  PubMed  Google Scholar 

  • Lagarda MJ, Garcia-Llatas G, Farre R (2006) Analysis of phytosterols in foods. J Pharm Biomed Anal 41(5):1486–1496

    CAS  PubMed  Google Scholar 

  • Lambo AM, Öste R, Nyman MEGL (2005) Dietary fibre in fermented oat and barley β-glucan rich concentrates. Food Chem 89(2):283–293

    CAS  Google Scholar 

  • Liu S, Manson JE, Stamfer MJ, Hu FB, Giovannucci E, Colditz GA, et al (2000) A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health 90(9):1409–1415. https://doi.org/10.2105/ajph.90.9.1409

  • Liu RH (2007) Whole grain phytochemicals and health. J Cereal Sci 46(3):207–219

    CAS  Google Scholar 

  • Liu RH (2013) Dietary bioactive compounds and their health implications. J Food Sci 78(Suppl 1):A18–A25

    CAS  PubMed  Google Scholar 

  • Liukkonen KH, Katina K, Wilhelmsson A (2003) Process-induced changes on bioactive compounds in whole grain rye. Proc Nutr Soc 62:117–122

    CAS  PubMed  Google Scholar 

  • Makarem N, Nicholson JM, Bandera EV et al (2016) Consumption of whole grains and cereal fiber in relation to cancer risk: a systematic review of longitudinal studies. Nutr Rev 74(6):353–373

    PubMed  PubMed Central  Google Scholar 

  • Mikušová L, Šturdík E, Holubková A (2011) Whole grain cereal food in prevention of obesity. Acta Chim Slovaca 4(1):95–114

    Google Scholar 

  • Montonen J, Knekt P, Järvinen R et al (2003) Whole-grain and fiber intake and the incidence of type 2 diabetes. Am J Clin Nutr 77(3):622–629

    CAS  PubMed  Google Scholar 

  • Moore J, Hao Z, Zhou K et al (2005) Carotenoid, tocopherol, phenolic acid and antioxidant properties of Maryland-grown soft wheat. J Agric Food Chem 53(17):6649–6657

    CAS  PubMed  Google Scholar 

  • Morris JN, Marr JW, Clayton DG (1977) Diet and heart: a postscript. Br Med J 2(6098):1307–1314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mourouti N, Kontogianni MD, Papavagelis C et al (2016) Whole grain consumption and breast cancer: a case-control study in women. J Am Coll Nutr 35(2):143–149

    CAS  PubMed  Google Scholar 

  • Murtaugh MA, Jacobs DR Jr, Jacob B (2003) Epidemiological support for the protection of whole grains against diabetes. Proc Nutr Soc 62(1):143–149

    CAS  PubMed  Google Scholar 

  • Oishi K, Yamamoto S, Itoh N et al (2015) Wheat alkylresorcinols suppress high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice. J Nutr 145(2):199–206

    PubMed  Google Scholar 

  • Okarter N, Liu RH (2010) Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr 50(3):193–208

    CAS  PubMed  Google Scholar 

  • Patel S (2015) Cereal bran fortified-functional foods for obesity and diabetes management: triumphs, hurdles and possibilities. J Funct Foods 14:255–269

    CAS  Google Scholar 

  • Pedersen B, Knudsen KEB, Eggum BO (1989) Nutritive value of cereal products with emphasis on the effect of milling. World Rev Nutr Diet 60:1–91

    CAS  PubMed  Google Scholar 

  • Peterson J, Dwyer J, Adlercreutz H et al (2010) Dietary lignans: physiology and potential for cardiovascular disease risk reduction. Nutr Rev 68(10):571–603

    PubMed  Google Scholar 

  • Poutanen K (2001) Effect of processing on the properties of dietary fibre. In: McCleary BV, Prosky L (eds) Advanced dietary fibre technology. Blackwell Science, Oxford, UK, pp 277–282

    Google Scholar 

  • Poutanen K (2012) Past and future of cereal grains as food for health. Trends Food Sci Technol 25(2):58–62

    CAS  Google Scholar 

  • Raboy V (2001) Seeds for a better future: low phytate grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6(10):458–462

    CAS  PubMed  Google Scholar 

  • Ragaee S, Gamel T, Seethraman K et al (2013) Food grains. In: Tiwari BK, Brunton NP, Brennan CS (eds) Handbook of plant food phytochemicals: sources, stability and extraction, 1st edn. Wiley-Blackwell, Chichester, UK, pp 138–162

    Google Scholar 

  • Raigond P, Ezekiel R, Raigond B (2015) Resistant starch in food: a review. J Sci Food Agric 95(10):1968–1978

    CAS  PubMed  Google Scholar 

  • Rebello CJ, Greenway FL, Finley JW (2014) Whole grains and pulses: a comparison of the nutritional and health benefit. J Chem Inf Model 62(29):7029–7049

    CAS  Google Scholar 

  • Ross AB, Kamal-Eldin A (2001) Alkylresorcinols are absorbed by human. In: Liukkonen K, Kuokka A, Poutanen K (eds) Whole grain and human health symposium 213. WTT Technical Research Center of Finland, Finland, p 93

    Google Scholar 

  • Schaffer-Lequart C, Lehmann U, Ross AB et al (2017) Whole grain in manufactured foods: current use, challenges and the way forward. Crit Rev Food Sci Nutr 57(8):1562–1568

    PubMed  Google Scholar 

  • Seal CJ (2006) Whole grains and CVD risk. Proc Nutr Soc 65(1):24–34

    CAS  PubMed  Google Scholar 

  • Seal CJ, Brownlee IA (2015) Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies. Proc Nutr Soc 74(3):313–319

    PubMed  Google Scholar 

  • Shahidi F (2009) Nutraceuticals and functional foods: whole versus processed foods. Trends Food Sci Technol 20(9):376–387

    CAS  Google Scholar 

  • Shahidi F, Naczk M (2003) Cereals, legumes, and nuts. Phenolics in food and nutraceuticals. CRC Press, Washington, DC, pp 17–82

    Google Scholar 

  • Sibakov J, Lehtinen P, Poutanen K (2013) Cereal brans as dietary fibre ingredients. In: Delcour JA, Poutanen K (eds) Fibre-rich and whole grain. Woodhead Publishing, Oxford, UK, pp 170–192

    Google Scholar 

  • Slavin JL, Jacobs D, Marquart L (2001) Grain processing and nutrition. Crit Rev Biotechnol 21(1):49–66. https://doi.org/10.1080/10408690091189176

  • Slavin J (2004) Whole grains and human health. Nurt Res Rev 17:99–110

    Google Scholar 

  • Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slavin JL, Martini MC, Jacobs DR et al (1999) Plausible mechanisms for the protectiveness of whole grains. Am J Clin Nutr 70(3 Suppl):459S–463S

    CAS  PubMed  Google Scholar 

  • Slavin J, Tucker M, Harriman C, Jonnalagadda SS (2013) Whole grains: definition, dietary recommendations, and health benefits. Cereal Foods World 58(4):191–198

    CAS  Google Scholar 

  • Soetan KO, Oyewole OE (2009) The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: a review. Afr J Food Sci 3(9):223–232

    CAS  Google Scholar 

  • Stevenson L, Phillips F, O’Sullivan K (2012) Wheat bran: its composition and benefits to health, a European perspective. Int J Food Sci Nutr 63(8):1001–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suh MH, Yoo SH, Chang PS et al (2005) Antioxidative activity of microencapsulated gamma-oryzanol on high cholesterol-fed rats. J Agric Food Chem 53(25):9747–9750

    CAS  PubMed  Google Scholar 

  • Suri DJ, Tanumihardjo SA (2016) Effects of different processing methods on the micronutrient and phytochemical contents of maize: from A to Z. Compr Rev Food Sci Food Saf 15(5):912–926

    CAS  PubMed  Google Scholar 

  • Thompson LU, Jenab M, Chen J et al (2001) Lignans and phytic acid. In: Liukkonen K, Kuokka A, Poutanen K (eds) Whole grain and human health symposium 213. WTT Technical Research Center of Finland, Finland, pp 28–29

    Google Scholar 

  • Tucci SA (2010) Phytochemicals in the control of human appetite and body weight. Pharmaceuticals 3(3):748–763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Kamp JW, Poutanen K, Seal CJ et al (2014) The HEALTHGRAIN definition of “whole grain”. Food Nutr Res 58:22100

    Google Scholar 

  • Vitaglione P, Napolitano A, Fogliano V (2008) Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci Technol 19(9):451–463

    CAS  Google Scholar 

  • Voutilainen S, Nurmi T, Mursu J et al (2006) Carotenoids and cardiovascular health. Am J Clin Nutr 83(6):1265–1271

    CAS  PubMed  Google Scholar 

  • Wilhelmson A, Oksman-Caldentey KM, Laitila A et al (2001) Development of a germination process for producing high β-glucan, whole grain food ingredients from oat. Cereal Chem 78(6):715–720

    CAS  Google Scholar 

  • Wolever T, Tosh SM, Gibbs AL, Brand-Miller J et al (2010) Physicochemical properties of oat b-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trial. Am J Clin Nutr 92(4):723–732

    CAS  PubMed  Google Scholar 

  • Wood PJ (2007) Cereal β-glucans in diet and health. J Cereal Sci 46(3):230–238

    CAS  Google Scholar 

  • Xiao Y, Ke Y, Wu S, Huang S, Li S, Lv Z et al (2018) Association between whole grain intake and breast cancer risk: a systematic review and meta-analysis of observational studies. Nutr J 17(1):87

    PubMed  PubMed Central  Google Scholar 

  • Yang F, Basu TK, Ooraikul B (2001) Studies on germination: conditions and antioxidant contents of wheat grain. Int J Food Sci Nutr 52(4):319–330

    CAS  PubMed  Google Scholar 

  • Ye EQ, Chacko SA, Chou EL et al (2012) Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr 142(7):1304–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zekovic DB, Kwiatkowski S, Vrvic MM et al (2005) Natural and modified (1→3)-beta-D-glucans in health promotion and disease alleviation. Crit Rev Biotechnol 25(4):205–230

    CAS  PubMed  Google Scholar 

  • Zhu Y, Sang S (2017) Phytochemicals in whole grain wheat and their health-promoting effects. Mol Nutr Food Res 61(7):1600852

    Google Scholar 

  • Zieliński H, Kozlowska H, Lewczuk B (2001) Bioactive compounds in the cereal grains before and after hydrothermal processing. Innov Food Sci Emerg Technol 2(3):159–169

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Sertaç Özer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Özer, M.S., Yazici, G.N. (2019). Phytochemicals of Whole Grains and Effects on Health. In: Malik, A., Erginkaya, Z., Erten, H. (eds) Health and Safety Aspects of Food Processing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-24903-8_11

Download citation

Publish with us

Policies and ethics