Skip to main content

Geometric Firefighting in the Half-Plane

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11646))

Abstract

In 2006, Alberto Bressan [3] suggested the following problem. Suppose a circular fire spreads in the Euclidean plane at unit speed. The task is to build, in real time, barrier curves to contain the fire. At each time t the total length of all barriers built so far must not exceed \(t \cdot v\), where v is a speed constant. How large a speed v is needed? He proved that speed \(v>2\) is sufficient, and that \(v>1\) is necessary. This gap of (1, 2] is still open. The crucial question seems to be the following. When trying to contain a fire, should one build, at maximum speed, the enclosing barrier, or does it make sense to spend some time on placing extra delaying barriers in the fire’s way? We study the situation where the fire must be contained in the upper \(L_1\) half-plane by an infinite horizontal barrier to which vertical line segments may be attached as delaying barriers. Surprisingly, such delaying barriers are helpful when properly placed. We prove that speed \(v=1.8772\) is sufficient, while \(v >1.66\) is necessary.

This work has been supported by DFG grant Kl 655/19 as part of a DACH project.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berger, F., Gilbers, A., Grüne, A., Klein, R.: How many lions are needed to clear a grid? Algorithms 2(3), 1069–1086 (2009)

    Article  MathSciNet  Google Scholar 

  2. Brass, P., Kim, K.D., Na, H.S., Shin, C.S.: Escaping offline searchers and isoperimetric theorems. Comput. Geom. 42(2), 119–126 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bressan, A.: Differential inclusions and the control of forest fires. J. Diff. Eqn. 243(2), 179–207 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bressan, A.: Price offered for a dynamic blocking problem (2011). http://personal.psu.edu/axb62/PSPDF/prize2.pdf

  5. Bressan, A., Burago, M., Friend, A., Jou, J.: Blocking strategies for a fire control problem. Anal. Appl. 6(3), 229–246 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bressan, A., Wang, T.: The minimum speed for a blocking problem on the half plane. J. Math. Anal. Appl. 356(1), 133–144 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bressan, A., Wang, T.: On the optimal strategy for an isotropic blocking problem. Calc. Var. PDE 45, 125–145 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dumitrescu, A., Suzuki, I., Żyliński, P.: Offline variants of the “lion and man” problem. Theor. Comput. Sci. 399(3), 220–235 (2008)

    Article  Google Scholar 

  9. Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs of maximum degree three. Discrete Math. 307(16), 2094–2105 (2007)

    Article  MathSciNet  Google Scholar 

  10. Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. Technical report (2007)

    Google Scholar 

  11. Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: The firefighter problem on graph classes. Theor. Comput. Sci. 613(C), 38–50 (2016)

    Article  MathSciNet  Google Scholar 

  12. Kim, S.S., Klein, R., Kübel, D., Langetepe, E., Schwarzwald, B.: Geometric firefighting in the half-plane. CoRR abs/1905.02067 (2019). https://arxiv.org/abs/1905.02067

  13. Klein, R.: Reversibility properties of the fire-fighting problem in graphs. Comput. Geom. 67, 38–41 (2018)

    Article  MathSciNet  Google Scholar 

  14. Klein, R., Kübel, D., Langetepe, E., Schwarzwald, B.: Protecting a highway from fire. In: Abstracts EuroCG 2018 (2018)

    Google Scholar 

  15. Klein, R., Langetepe, E.: Computational geometry column 63. SIGACT News 47(2), 34–39 (2016)

    Article  MathSciNet  Google Scholar 

  16. Klein, R., Langetepe, E., Levcopoulos, C.: A fire-fighter’s problem. In: Proceedings 31st Symposium on Computational Geometry (SoCG 2015) (2015)

    Google Scholar 

  17. Klein, R., Langetepe, E., Levcopoulos, C., Lingas, A., Schwarzwald, B.: On a fire fighter’s problem. Int. J, Found. Comput. Sci. (2018, to appear)

    Google Scholar 

  18. Klein, R., Levcopoulos, C., Lingas, A.: Approximation algorithms for the geometric firefighter and budget fence problem. Algorithms 11, 45 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Schwarzwald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, SS., Klein, R., Kübel, D., Langetepe, E., Schwarzwald, B. (2019). Geometric Firefighting in the Half-Plane. In: Friggstad, Z., Sack, JR., Salavatipour, M. (eds) Algorithms and Data Structures. WADS 2019. Lecture Notes in Computer Science(), vol 11646. Springer, Cham. https://doi.org/10.1007/978-3-030-24766-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24766-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24765-2

  • Online ISBN: 978-3-030-24766-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics