Skip to main content

Molecular Basis of Fibrogenesis and Angiogenesis During Chronic Liver Disease: Impact of TGF-β and VEGF on Pathogenic Pathways

  • Chapter
  • First Online:
  • 2898 Accesses

Abstract

Liver cirrhosis (LC) is pathologically characterized by the loss of functional hepatocytes. The defective area of hepatocytes is replaced with myofibroblast-produced extracellular matrix (ECM) proteins, such as collagens. Transforming growth factor-β (TGF-β) plays multiple roles in LC progression during chronic liver disease. Indeed, TGF-β induces apoptosis and epithelial mesenchymal transition in hepatocytes. Furthermore, TGF-β induces myofibroblastic phenotypes in hepatic stellate cells and sinusoidal endothelial cells for the production of ECMs. TGF-β also contributes to local hypoxia, at least in part, through the induction of endothelin-1, a potent vasoconstrictor. Under such a hypoxic condition, vascular endothelial growth factor (VEGF) is upregulated, followed by neovessel formation, edema and perivascular inflammation (i.e., pathogenic angiogenesis). VEGF and oxidant stress activate latent form TGF-β, resulting in the enhancement of LC, suggesting a crosstalk between pathogenic angiogenesis and fibrosis. In this chapter, we would like to focus on the potential linkage of VEGF-based angiogenesis with TGF-β-enhanced fibrogenesis for understanding of LC-associated pathogenic processes. Not only TGF-β antagonism but also anti-angiogenic therapy may be practical for retarding the progression of LC, a common hallmark of chronic liver disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ramachandran P, Henderson NC. Antifibrotics in chronic liver disease: tractable targets and translational challenges. Lancet Gastroenterol Hepatol. 2016;1:328–40.

    Article  PubMed  Google Scholar 

  2. Kubo N, Araki K, Kuwano H, et al. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol. 2016;22:6841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dooley S, ten Dijke P. TGF-β in progression of liver disease. Cell Tissue Res. 2012;347:245–56.

    Article  CAS  PubMed  Google Scholar 

  4. Annoni G, Weiner FR, Zern MA. Increased transforming growth factor-β1 gene expression in human liver disease. J Hepatol. 1992;14:259–64.

    Article  CAS  PubMed  Google Scholar 

  5. Kanzler S, Lohse AW, Keil A, et al. TGF-β1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am J Phys. 1999;276:G1059–68.

    CAS  Google Scholar 

  6. Bocca C, Novo E, Miglietta A, et al. Angiogenesis and fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol. 2015;1:477–88.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gana JC, Serrano CA, Ling SC. Angiogenesis and portal-systemic collaterals in portal hypertension. Ann Hepatol. 2016;15:303–13.

    Article  CAS  PubMed  Google Scholar 

  8. Sakata K, Eda S, Lee ES, et al. Neovessel formation promotes liver fibrosis via providing latent transforming growth factor-β. Biochem Biophys Res Commun. 2014;443:950–6.

    Article  CAS  PubMed  Google Scholar 

  9. De Bleser PJ, Niki T, Rogiers V, et al. Transforming growth factor-β gene expression in normal and fibrotic rat liver. J Hepatol. 1997;26:886–93.

    Article  PubMed  Google Scholar 

  10. Sheen-Chen SM, Lin CR, Chen KH, et al. Epigenetic histone methylation regulates transforming growth factor-β1 expression following bile duct ligation in rats. J Gastroenterol. 2014;49:1285–97.

    Article  CAS  PubMed  Google Scholar 

  11. Fan Z, Hao C, Li M, et al. MKL1 is an epigenetic modulator of TGF-β induced fibrogenesis. Biochim Biophys Acta. 2015;1849:1219–28.

    Article  CAS  PubMed  Google Scholar 

  12. Murphy-Ullrich JE, Suto MJ. Thrombospondin-1 regulation of latent TGF-β activation: a therapeutic target for fibrotic disease. Matrix Biol. 2018;68-9:28–43.

    Article  CAS  Google Scholar 

  13. Patsenker E, Popov Y, Stickel F, et al. Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-β activation and retards biliary fibrosis progression. Gastroenterology. 2008;135:660–70.

    Article  CAS  PubMed  Google Scholar 

  14. Cattaneo F, Guerra G, Parisi M, et al. Cell-surface receptors transactivation mediated by G protein-coupled receptors. Int J Mol Sci. 2014;29:19700–28.

    Article  CAS  Google Scholar 

  15. Emami N, Diamandis EP. New insights into the functional mechanisms and clinical applications of the kallikrein-related peptidase family. Mol Oncol. 2007;1:269–87.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Liu H, Meyer C, et al. Transforming growth factor-β (TGF-β)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J Biol Chem. 2013;288:30708–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li HY, Ju D, Zhang DW, et al. Activation of TGF-β1-CD147 positive feedback loop in hepatic stellate cells promotes liver fibrosis. Sci Rep. 2015;5:16552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kiagiadaki F, Kampa M, Voumvouraki A, et al. Activin-A causes hepatic stellate cell activation via the induction of TNFα and TGF-β in Kupffer cells. Biochim Biophys Acta. 2018;1864:891–9.

    Article  CAS  Google Scholar 

  19. Matsuda M, Tsurusaki S, Miyata N, et al. Oncostatin-M causes liver fibrosis by regulating cooperation between hepatic stellate cells and macrophages in mice. Hepatology. 2018;67:296–312.

    Article  CAS  PubMed  Google Scholar 

  20. Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat Med. 2007;13:1324–32.

    Article  CAS  PubMed  Google Scholar 

  21. Copple BL. Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-β-dependent mechanisms. Liver Int. 2010;30:669–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takehara T, Tatsumi T, Suzuki T, et al. Hepatocyte-specific disruption of Bcl-xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology. 2004;127:1189–97.

    Article  CAS  PubMed  Google Scholar 

  23. Oberhammer FA, Pavelka M, Sharma S, et al. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor-β1. Proc Natl Acad Sci U S A. 1992;89:5408–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schrum LW, Bird MA, Salcher O, et al. Autocrine expression of activated transforming growth factor-β1 induces apoptosis in normal rat liver. Am J Physiol Gastrointest Liver Physiol. 2001;280:G139–48.

    Article  CAS  PubMed  Google Scholar 

  25. Fan X, Zhang Q, Li S, et al. Attenuation of CCl4-induced hepatic fibrosis in mice by vaccinating against TGF-β1. PLoS One. 2013;8:e82190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Herrera B, Fernández M, Alvarez AM, et al. Activation of caspases occurs downstream from radical oxygen species production, Bcl-xL down-regulation, and early cytochrome C release in apoptosis induced by transforming growth factor-β in rat fetal hepatocytes. Hepatology. 2001;34:548–56.

    Article  CAS  PubMed  Google Scholar 

  27. Sola S, Ma X, Castro RE, et al. Ursodeoxycholic acid modulates E2F-1 and p53 expression through a caspase-independent mechanism in transforming growth factor-β1-induced apoptosis of rat hepatocytes. J Biol Chem. 2003;278:48831–8.

    Article  CAS  PubMed  Google Scholar 

  28. Yang Y, Pan X, Lei W, et al. Regulation of transforming growth factor-β1-induced apoptosis and epithelial-to-mesenchymal transition by protein kinase A and signal transducers and activators of transcription 3. Cancer Res. 2006;66:8617–24.

    Article  CAS  PubMed  Google Scholar 

  29. Tian HY, Zhang KH, Gao X, et al. Comparative proteomic analysis of cell cycle-dependent apoptosis induced by transforming growth factor-β. Biochim Biophys Acta. 2009;1794:1387–97.

    Article  CAS  PubMed  Google Scholar 

  30. Franco DL, Mainez J, Vega S, et al. Snail1 suppresses TGF-β-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J Cell Sci. 2010;123:3467–77.

    Article  CAS  PubMed  Google Scholar 

  31. Presser LD, McRae S, Waris G. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion. PLoS One. 2013;8:e56367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wiercinska E, Wickert L, Denecke B, et al. Id1 is a critical mediator in TGF-β-induced transdifferentiation of rat hepatic stellate cells. Hepatology. 2006;43:1032–41.

    Article  CAS  PubMed  Google Scholar 

  33. Bansal R, van Baarlen J, Storm G, et al. The interplay of the Notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis. Sci Rep. 2015;5:18272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang K, Zhang YQ, Ai WB, et al. Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-β/BMP signaling. World J Gastroenterol. 2015;21:878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu J, Zhang Z, Zhang Y, et al. MicroRNA-212 activates hepatic stellate cells and promotes liver fibrosis via targeting SMAD7. Biochem Biophys Res Commun. 2018;496:176–83.

    Article  CAS  PubMed  Google Scholar 

  36. Zeng C, Wang YL, Xie C, et al. Identification of a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis. Oncotarget. 2015;6:12224–33.

    PubMed  PubMed Central  Google Scholar 

  37. Ge J, Chang N, Zhao Z, et al. Essential roles of RNA-binding protein HuR in activation of hepatic stellate cells induced by transforming growth factor-β1. Sci Rep. 2016;6:22141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Colak S, ten Dijke P. Targeting TGF-β signaling in cancer. Trends Cancer. 2017;3:56–71.

    Article  CAS  PubMed  Google Scholar 

  39. Wu X, Wu X, Ma Y, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7:13498.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tobar N, Toyos M, Urra C, et al. c-Jun N terminal kinase modulates NOX-4 derived ROS production and myofibroblasts differentiation in human breast stromal cells. BMC Cancer. 2014;14:640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kim G, Kim J, Lim YL, et al. Renin-angiotensin system inhibitors and fibrosis in chronic liver disease: a systematic review. Hepatol Int. 2016;10:819–28.

    Article  CAS  PubMed  Google Scholar 

  42. Ueki M, Koda M, Yamamoto S, et al. Preventive and therapeutic effects of angiotensin II type 1 receptor blocker on hepatic fibrosis induced by bile duct ligation in rats. J Gastroenterol. 2006;41:996–1004.

    Article  CAS  PubMed  Google Scholar 

  43. Ebrahimkhani MR, Oakley F, Murphy LB, et al. Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nat Med. 2011;17:1668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Q, Usinger W, Nichols B, et al. Cooperative interaction of CTGF and TGF-β in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011;4:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Rosmorduc O, Housset C. Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. Semin Liver Dis. 2010;30:258–70.

    Article  CAS  PubMed  Google Scholar 

  46. Wereszczynka-Siemiatkowska U, Swidnicka-Siergiejko A, Siemiatkowski A, et al. Endothelin-1 and transforming growth factor-β1 correlate with liver function and portal pressure in cirrhotic patients. Cytokine. 2015;76:144–51.

    Article  CAS  PubMed  Google Scholar 

  47. Unneberg K, Mjaaland M, Helseth E, et al. Effects of endothelin-1 on hepatic blood flow. HPB Surg. 1996;9:153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hsu SJ, Lin TY, Wang SS, et al. Endothelin receptor blockers reduce shunting and angiogenesis in cirrhotic rats. Eur J Clin Investig. 2016;46:572–80.

    Article  CAS  Google Scholar 

  49. Shimada H, Staten NR, Rajagopalan LE. TGF-β1 mediated activation of Rho kinase induces TGF-β2 and endothelin-1 expression in human hepatic stellate cells. J Hepatol. 2011;54:521–8.

    Article  CAS  PubMed  Google Scholar 

  50. Birukova AA, Cokic I, Moldobaeva N, et al. Paxillin is involved in the differential regulation of endothelial barrier by HGF and VEGF. Am J Respir Cell Mol Biol. 2009;40:99–107.

    Article  CAS  PubMed  Google Scholar 

  51. Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. Front Oncol. 2013;3:211.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Melgar-Lesmes P, Tugues S, Ros J, et al. Vascular endothelial growth factor and angiopoietin-2 play a major role in the pathogenesis of vascular leakage in cirrhotic rats. Gut. 2009;58:285–92.

    Article  CAS  PubMed  Google Scholar 

  53. Affò S, Sancho-Bru P. CCL2: a link between hepatic inflammation, fibrosis and angiogenesis? Gut. 2014;63:1834–5.

    Article  PubMed  CAS  Google Scholar 

  54. Baeck C, Wei X, Bartneck M, et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C(+) macrophage infiltration in mice. Hepatology. 2014;59:1060–72.

    Article  CAS  PubMed  Google Scholar 

  55. Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 2017;11:240–53.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang F, Liu GS, Dusting GJ, et al. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses. Redox Biol. 2014;2:267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gressner OA, Weiskirchen R, Gressner AM. Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options. Comp Hepatol. 2007;6:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Ji H, Li Y, Jiang F, et al. Inhibition of transforming growth factor-β/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer. Cancer Sci. 2014;105:1541–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lemoinne S, Cadoret A, Rautou PE, et al. Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology. 2015;61:1041–55.

    Article  CAS  PubMed  Google Scholar 

  60. Jin X, Aimaiti Y, Chen Z, et al. Hepatic stellate cells promote angiogenesis via the TGF-β1-Jagged1/VEGFA axis. Exp Cell Res. 2018;373:34–43.

    Article  CAS  PubMed  Google Scholar 

  61. Piera-Velazquez S, Mendoza FA, Jimenez SA. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med. 2016;5:45.

    Article  PubMed Central  CAS  Google Scholar 

  62. Doerr M, Morrison J, Bergeron L, et al. Differential effect of hypoxia on early endothelial mesenchymal transition response to transforming growth-β isoforms 1 and 2. Microvasc Res. 2016;108:48–63.

    Article  CAS  PubMed  Google Scholar 

  63. Li J, Qu X, Yao J, et al. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59:2612–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kitao A, Sato Y, Sawada-Kitamura S, et al. Endothelial to mesenchymal transition via transforming growth factor-β1/Smad activation is associated with portal venous stenosis in idiopathic portal hypertension. Am J Pathol. 2009;175:616–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol. 2010;53:976–80.

    Article  PubMed  Google Scholar 

  66. Dufton NP, Peghaire CR, Osuna-Almagro L, et al. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun. 2017;8:895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ribera J, Pauta M, Melgar-Lesmes P, et al. A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury. Am J Physiol Gastrointest Liver Physiol. 2017;313:G492–504.

    Article  PubMed  CAS  Google Scholar 

  68. Ling H, Roux E, Hempel D, et al. Transforming growth factor-β neutralization ameliorates pre-existing hepatic fibrosis and reduces cholangiocarcinoma in thioacetamide-treated rats. PLoS One. 2013;8:e54499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Morris JC, Tan AR, Olencki TE, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-β (TGF-β) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014;9:e90353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Park SA, Kim MJ, Park SY, et al. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling. Cell Mol Life Sci. 2015;72:2023–39.

    Article  CAS  PubMed  Google Scholar 

  71. Yoshiji H, Kuriyama S, Yoshii J, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut. 2003;52:1347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim MY, Cho MY, Baik SK, et al. Beneficial effects of candesartan, an angiotensin blocking agent, on compensated alcoholic liver fibrosis—a randomized open-label controlled study. Liver Int. 2012;32:977–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    Which statement is true?

    1. (a)

      MicroRNA (miRNA) is a small non-coding RNA and is important for RNA silencing and post-transcriptional regulation.

    2. (b)

      miRNA-122 decreases the transcription of α-SMA. CORRECT.

    3. (c)

      TGF-β increases miRNA-122 levels in HSCs.

    4. (d)

      TGF-β inhibits EMT in hepatocytes to acquire MyoFB-like phenotypes for interstitial ECM production.

  2. 2.

    Which statement is true?

    1. (a)

      Transforming growth factor-β (TGF-β) is one of the most important cytokines for the onset and progression of liver cirrhosis.

    2. (b)

      TGF-β secreted from Kupffer cells (KCs) converts sinusoidal cells, such as hepatic stellate cells (HSCs) and endothelial cells (ECs), to smooth muscle cell (SMC)-like myofibroblasts (MyoFBs).

    3. (c)

      In the injured livers, TGF-β is protective toward hepatocytes.

    4. (d)

      Oncostatin-M induces tissue inhibitor of metalloproteinase-1 (TIMP1) in HSCs, and further stimulates liver cirrhosis regression.

1.2 Answers

  1. 1.

    Which statement is true?

    1. (a)

      MicroRNA (miRNA) is a small non-coding RNA and is important for RNA silencing and post-transcriptional regulation. CORRECT.

    2. (b)

      miRNA-122 decreases the transcription of α-SMA. CORRECT.

    3. (c)

      TGF-β decreases miRNA-122 levels in HSCs.

    4. (d)

      TGF-β can induce EMT in hepatocytes to acquire MyoFB-like phenotypes for interstitial ECM production.

  2. 2.

    Which statement is true?

    1. (a)

      Transforming growth factor-β (TGF-β) is one of the most important cytokines for the onset and progression of liver cirrhosis. CORRECT.

    2. (b)

      TGF-β secreted from Kupffer cells (KCs) converts sinusoidal cells, such as hepatic stellate cells (HSCs) and endothelial cells (ECs), to smooth muscle cell (SMC)-like myofibroblasts (MyoFBs). CORRECT.

    3. (c)

      In the injured livers, TGF-β is apoptotic toward hepatocytes.

    4. (d)

      Oncostatin-M induces tissue inhibitor of metalloproteinase-1 (TIMP1) in HSCs, and further stimulates liver cirrhosis progression.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mizuno, S., Osaki, E. (2020). Molecular Basis of Fibrogenesis and Angiogenesis During Chronic Liver Disease: Impact of TGF-β and VEGF on Pathogenic Pathways. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics