Skip to main content

Chronic Liver Failure and Acute-on-Chronic Liver Failure

  • Chapter
  • First Online:
Liver Diseases

Abstract

Chronic liver failure (CLF) is the result of persistent liver damage. Given the multifaceted abilities of the organ, CLF is a multisystem progressive disease that evolves from an asymptomatic (compensated) to a clinically manifested phase (decompensated) driven by hemodynamic disturbances and systemic inflammation. Among the whole spectrum, several stages with prognostic relevance have been described. Clinical management of CLF aims to treat primary liver disease, screening, prevent and controlling the complications, and consider liver transplantation (LT) in advanced stages and life-threatening complications. Improvement and reversibility of liver damage and clinical consequences have been described with etiological cure.

Acute-on-chronic liver failure (ACLF) is an acute decompensation characterized by high short-term mortality related to the development of organ failure. Systemic inflammatory response seems to play a key role. Despite its high risk of short-term mortality, it is a very dynamic syndrome and potentially reversible. Management includes early treatment of potential triggers, prevention of progression and support of failed organs and consider for LT. Since there is very limited data on the impact of ACLF on LT outcomes, its clinical applicability remains controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACLF:

Acute-on-chronic liver failure

AKI:

Acute kidney injury

BCLC:

Barcelona clinic liver cancer

BT:

Bacterial translocation

cACLD:

Compensated advanced chronic liver disease

CLF:

Chronic liver failure

CRP:

C-reactive protein

Crs:

Serum creatinine

DAMP:

Damage-associated molecular pattern

DM:

Diabetes mellitus

GA:

Glutaminase

GS:

Glutamine synthetase

HCC:

Hepatocellular carcinoma

HE:

Hepatic encephalopathy

HPS:

Hepatopulmonary syndrome

HRS:

Hepatorenal syndrome

LT:

Liver transplantation

LVP:

Large volume paracentesis

MELD:

Model for end-stage liver disease

NAFLD:

Non-alcoholic fatty liver disease

NSAIDs:

Nonsteroidal anti-inflammatory drugs

NSBB:

Non-selective beta blockers

PAMP:

Pathogen-associated molecular pattern

PH:

Portal hypertension

PPHT:

Portopulmonary hypertension

PSS:

Portosystemic shunts

SBP:

Spontaneous bacterial peritonitis

TIPS:

Transjugular intrahepatic portosystemic shunt

References

  1. Tsochatzis EA, Bosch J, Burroughs AK. Liver cirrhosis. Lancet. 2014;383(9930):1749–61.

    Article  PubMed  Google Scholar 

  2. Sanyal AJ, Bosch J, Blei A, Arroyo V. Portal hypertension and its complications. Gastroenterology. 2008;134(6):1715–28.

    Article  PubMed  Google Scholar 

  3. de Franchis R. Expanding consensus in portal hypertension: report of the Baveno VI consensus workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015;63(3):743–52.

    Article  PubMed  Google Scholar 

  4. Golding PL, Smith M, Williams R. Multisystem involvement in chronic liver disease. Studies on the incidence and pathogenesis. Am J Med. 1973;55(6):772–82.

    Article  CAS  PubMed  Google Scholar 

  5. Minemura M, Tajiri K, Shimizu Y. Systemic abnormalities in liver disease. World J Gastroenterol. 2009;15(24):2960–74.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thomson MJ, Tapper EB, Lok ASF. Dos and don’ts in the management of cirrhosis: a view from the 21st century. Am J Gastroenterol. 2018;113(7):927–31.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lens S, Alvarado-Tapias E, Marino Z, et al. Effects of all-oral anti-viral therapy on HVPG and systemic hemodynamics in patients with hepatitis C virus-associated cirrhosis. Gastroenterology. 2017;153(5):1273–83.

    Article  CAS  PubMed  Google Scholar 

  8. Muntaner L, Altamirano JT, Augustin S, et al. High doses of beta-blockers and alcohol abstinence improve long-term rebleeding and mortality in cirrhotic patients after an acute variceal bleeding. Liver Int. 2010;30(8):1123–30.

    Article  CAS  PubMed  Google Scholar 

  9. Di M, Calvaruso V, Ferraro D, et al. Effects of eradicating hepatitis C virus infection in patients with cirrhosis differ with stage of portal hypertension. Gastroenterology. 2016;151(1):130–9.

    Article  Google Scholar 

  10. Luca A, Garcia-Pagan JC, Bosch J, et al. Effects of ethanol consumption on hepatic hemodynamics in patients with alcoholic cirrhosis. Gastroenterology. 1997;112(4):1284–9.

    Article  CAS  PubMed  Google Scholar 

  11. D'Amico G, Morabito A, D'Amico M, et al. Clinical states of cirrhosis and competing risks. J Hepatol. 2018;68(3):563–76.

    Article  PubMed  Google Scholar 

  12. Moreau R, Jalan R, Gines P, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426, 1437.

    Article  PubMed  Google Scholar 

  13. Arroyo V, Moreau R, Kamath PS, et al. Acute-on-chronic liver failure in cirrhosis. Nat Rev Dis Primers. 2016;2:16041.

    Article  PubMed  Google Scholar 

  14. Bosch J, Arroyo V, Betriu A, et al. Hepatic hemodynamics and the renin-angiotensin-aldosterone system in cirrhosis. Gastroenterology. 1980;78(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bosch J, Pizcueta P, Feu F, Fernandez M, Garcia-Pagan JC. Pathophysiology of portal hypertension. Gastroenterol Clin N Am. 1992;21(1):1–14.

    CAS  Google Scholar 

  16. Pimpin L, Cortez-Pinto H, Negro F, et al. Burden of liver disease in Europe: epidemiology and analysis of risk factors to identify prevention policies. J Hepatol. 2018;69(3):718–35.

    Article  PubMed  Google Scholar 

  17. Giannelli V, Di G, Iebba V, et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol. 2014;20(45):16795–810.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Acharya C, Sahingur SE, Bajaj JS. Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight. 2017;2(19):pii: 94416.

    Article  Google Scholar 

  19. Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54(2):562–72.

    Article  PubMed  Google Scholar 

  20. Bajaj JS, Heuman DM, Hylemon PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60(5):940–7.

    Article  CAS  PubMed  Google Scholar 

  21. Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60(1):197–209.

    Article  PubMed  Google Scholar 

  22. Bauer TM, Steinbruckner B, Brinkmann FE, et al. Small intestinal bacterial overgrowth in patients with cirrhosis: prevalence and relation with spontaneous bacterial peritonitis. Am J Gastroenterol. 2001;96(10):2962–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ponziani FR, Zocco MA, Cerrito L, Gasbarrini A, Pompili M. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol. 2018;12(7):641–56.

    Article  CAS  PubMed  Google Scholar 

  24. Bajaj JS, Ridlon JM, Hylemon PB, et al. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am J Physiol Gastrointest Liver Physiol. 2012;302(1):G168–75.

    Article  CAS  PubMed  Google Scholar 

  25. Runyon BA, Squier S, Borzio M. Translocation of gut bacteria in rats with cirrhosis to mesenteric lymph nodes partially explains the pathogenesis of spontaneous bacterial peritonitis. J Hepatol. 1994;21(5):792–6.

    Article  CAS  PubMed  Google Scholar 

  26. Bellot P, Garcia-Pagan JC, Frances R, et al. Bacterial DNA translocation is associated with systemic circulatory abnormalities and intrahepatic endothelial dysfunction in patients with cirrhosis. Hepatology. 2010;52(6):2044–52.

    Article  CAS  PubMed  Google Scholar 

  27. Thalheimer U, Triantos CK, Samonakis DN, Patch D, Burroughs AK. Infection, coagulation, and variceal bleeding in cirrhosis. Gut. 2005;54(4):556–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Claria J, Stauber RE, Coenraad MJ, et al. Systemic inflammation in decompensated cirrhosis: characterization and role in acute-on-chronic liver failure. Hepatology. 2016;64(4):1249–64.

    Article  CAS  PubMed  Google Scholar 

  29. Wiest R, Albillos A, Trauner M, Bajaj JS, Jalan R. Targeting the gut-liver axis in liver disease. J Hepatol. 2017;67(5):1084–103.

    Article  CAS  PubMed  Google Scholar 

  30. Ishibashi H, Nakamura M, Komori A, Migita K, Shimoda S. Liver architecture, cell function, and disease. Semin Immunopathol. 2009;31(3):399–409.

    Article  PubMed  Google Scholar 

  31. Berzigotti A, Seijo S, Reverter E, Bosch J. Assessing portal hypertension in liver diseases. Expert Rev Gastroenterol Hepatol. 2013;7(2):141–55.

    Article  CAS  PubMed  Google Scholar 

  32. Graham DY, Smith JL. The course of patients after variceal hemorrhage. Gastroenterology. 1981;80(4):800–9.

    Article  CAS  PubMed  Google Scholar 

  33. Villanueva C, Colomo A, Bosch A, et al. Transfusion strategies for acute upper gastrointestinal bleeding. N Engl J Med. 2013;368(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  34. Garcia-Pagan JC, Caca K, Bureau C, et al. Early use of TIPS in patients with cirrhosis and variceal bleeding. N Engl J Med. 2010;362(25):2370–9.

    Article  CAS  PubMed  Google Scholar 

  35. Procopet B, Giraldez A, Amitrano L, et al. Preemptive-TIPS improves outcome in high-risk variceal bleeding: an observational study. Hepatology. 2019;69(1):282–93.

    PubMed  Google Scholar 

  36. Serste T, Melot C, Francoz C, et al. Deleterious effects of beta-blockers on survival in patients with cirrhosis and refractory ascites. Hepatology. 2010;52(3):1017–22.

    Article  CAS  PubMed  Google Scholar 

  37. Mandorfer M, Bota S, Schwabl P, et al. Nonselective beta blockers increase risk for hepatorenal syndrome and death in patients with cirrhosis and spontaneous bacterial peritonitis. Gastroenterology. 2014;146(7):1680–90.

    Article  CAS  PubMed  Google Scholar 

  38. Reiberger T, Mandorfer M. Beta adrenergic blockade and decompensated cirrhosis. J Hepatol. 2017;66(4):849–59.

    Article  CAS  PubMed  Google Scholar 

  39. Urrunaga NH, Rockey DC. Portal hypertensive gastropathy and colopathy. Clin Liver Dis. 2014;18(2):389–406.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Madonia S, D'Amico G, Traina M, et al. Prognostic indicators of successful endoscopic sclerotherapy for prevention of rebleeding from oesophageal varices in cirrhosis: a long-term cohort study. Dig Liver Dis. 2000;32(9):782–91.

    Article  CAS  PubMed  Google Scholar 

  41. Ripoll C, Groszmann R, Garcia-Tsao G, et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology. 2007;133(2):481–8.

    Article  CAS  PubMed  Google Scholar 

  42. EASL. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69(2):406–60.

    Article  Google Scholar 

  43. Bernardi M, Caraceni P, Navickis RJ, Wilkes MM. Albumin infusion in patients undergoing large-volume paracentesis: a meta-analysis of randomized trials. Hepatology. 2012;55(4):1172–81.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Martinez R, Caraceni P, Bernardi M, Gines P, Arroyo V, Jalan R. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology. 2013;58(5):1836–46.

    Article  CAS  PubMed  Google Scholar 

  45. Salerno F, Borroni G, Moser P, et al. Survival and prognostic factors of cirrhotic patients with ascites: a study of 134 outpatients. Am J Gastroenterol. 1993;88(4):514–9.

    CAS  PubMed  Google Scholar 

  46. Salerno F, Camma C, Enea M, Rossle M, Wong F. Transjugular intrahepatic portosystemic shunt for refractory ascites: a meta-analysis of individual patient data. Gastroenterology. 2007;133(3):825–34.

    Article  CAS  PubMed  Google Scholar 

  47. Bureau C, Thabut D, Oberti F, et al. Transjugular intrahepatic portosystemic shunts with covered stents increase transplant-free survival of patients with cirrhosis and recurrent ascites. Gastroenterology. 2017;152(1):157–63.

    Article  PubMed  Google Scholar 

  48. Bellot P, Welker MW, Soriano G, et al. Automated low flow pump system for the treatment of refractory ascites: a multi-center safety and efficacy study. J Hepatol. 2013;58(5):922–7.

    Article  PubMed  Google Scholar 

  49. Bureau C, Adebayo D, de RM C, et al. Alfapump(R) system vs. large volume paracentesis for refractory ascites: a multicenter randomized controlled study. J Hepatol. 2017;67(5):940–9.

    Article  PubMed  Google Scholar 

  50. Angeli P, Gines P, Wong F, et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol. 2015;62(4):968–74.

    Article  PubMed  Google Scholar 

  51. Testino G, Ferro C, Sumberaz A, et al. Type-2 hepatorenal syndrome and refractory ascites: role of transjugular intrahepatic portosystemic stent-shunt in eighteen patients with advanced cirrhosis awaiting orthotopic liver transplantation. Hepato-Gastroenterology. 2003;50(54):1753–5.

    PubMed  Google Scholar 

  52. Guevara M, Gines P, Bandi JC, et al. Transjugular intrahepatic portosystemic shunt in hepatorenal syndrome: effects on renal function and vasoactive systems. Hepatology. 1998;28(2):416–22.

    Article  CAS  PubMed  Google Scholar 

  53. Albillos A, Lario M, Alvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol. 2014;61(6):1385–96.

    Article  CAS  PubMed  Google Scholar 

  54. Kim JJ, Tsukamoto MM, Mathur AK, et al. Delayed paracentesis is associated with increased in-hospital mortality in patients with spontaneous bacterial peritonitis. Am J Gastroenterol. 2014;109(9):1436–42.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Martinez R, Andreola F, Mehta G, et al. Immunomodulatory and antioxidant function of albumin stabilises the endothelium and improves survival in a rodent model of chronic liver failure. J Hepatol. 2015;62(4):799–806.

    Article  CAS  PubMed  Google Scholar 

  56. Sort P, Navasa M, Arroyo V, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341(6):403–9.

    Article  CAS  PubMed  Google Scholar 

  57. Poca M, Concepcion M, Casas M, et al. Role of albumin treatment in patients with spontaneous bacterial peritonitis. Clin Gastroenterol Hepatol. 2012;10(3):309–15.

    Article  CAS  PubMed  Google Scholar 

  58. Arvaniti V, D’Amico G, Fede G, et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology. 2010;139(4):1246, 1256.

    Article  PubMed  Google Scholar 

  59. Vilstrup H, Amodio P, Bajaj J, et al. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology. 2014;60(2):715–35.

    Article  PubMed  Google Scholar 

  60. Amodio P, Del PF, Petteno E, et al. Prevalence and prognostic value of quantified electroencephalogram (EEG) alterations in cirrhotic patients. J Hepatol. 2001;35(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  61. Cordoba J, Minguez B. Hepatic encephalopathy. Semin Liver Dis. 2008;28(1):70–80.

    Article  PubMed  Google Scholar 

  62. Olde Damink SW, Jalan R, Deutz NE, et al. The kidney plays a major role in the hyperammonemia seen after simulated or actual GI bleeding in patients with cirrhosis. Hepatology. 2003;37(6):1277–85.

    Article  PubMed  Google Scholar 

  63. Shawcross DL, Davies NA, Williams R, Jalan R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol. 2004;40(2):247–54.

    Article  CAS  PubMed  Google Scholar 

  64. Cordoba J, Ventura-Cots M, Simon-Talero M, et al. Characteristics, risk factors, and mortality of cirrhotic patients hospitalized for hepatic encephalopathy with and without acute-on-chronic liver failure (ACLF). J Hepatol. 2014;60(2):275–81.

    Article  PubMed  Google Scholar 

  65. Vilstrup H, Schousboe A. Hepatic encephalopathy: an enigma from patient to enzyme and back. Metab Brain Dis. 2013;28(2):117.

    Article  PubMed  Google Scholar 

  66. Feltracco P, Cagnin A, Carollo C, Barbieri S, Ori C. Neurological disorders in liver transplant candidates: Pathophysiology and clinical assessment. Transplant Rev (Orlando). 2017;31(3):193–206.

    Article  Google Scholar 

  67. Zardi EM, Abbate A, Zardi DM, et al. Cirrhotic cardiomyopathy. J Am Coll Cardiol. 2010;56(7):539–49.

    Article  CAS  PubMed  Google Scholar 

  68. Torregrosa M, Aguade S, Dos L, et al. Cardiac alterations in cirrhosis: reversibility after liver transplantation. J Hepatol. 2005;42(1):68–74.

    Article  PubMed  Google Scholar 

  69. Machicao VI, Balakrishnan M, Fallon MB. Pulmonary complications in chronic liver disease. Hepatology. 2014;59(4):1627–37.

    Article  PubMed  Google Scholar 

  70. Montano-Loza AJ, Meza-Junco J, Prado CM, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10(2):166–73, 173.

    Article  PubMed  Google Scholar 

  71. Lucidi C, Lattanzi B, Di G. V et al. A low muscle mass increases mortality in compensated cirrhotic patients with sepsis. Liver Int. 2018;38(5):851–7.

    Article  PubMed  Google Scholar 

  72. Ebadi M, Tandon P, Moctezuma-Velazquez C, et al. Low subcutaneous adiposity associates with higher mortality in female patients with cirrhosis. J Hepatol. 2018;69(3):608–16.

    Article  PubMed  Google Scholar 

  73. EASL. Clinical practice guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70(1):172–93.

    Article  Google Scholar 

  74. Amodio P, Bemeur C, Butterworth R, et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: International Society for Hepatic Encephalopathy and Nitrogen Metabolism Consensus. Hepatology. 2013;58(1):325–36.

    Article  CAS  PubMed  Google Scholar 

  75. Les I, Doval E, Garcia-Martinez R, et al. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: a randomized study. Am J Gastroenterol. 2011;106(6):1081–8.

    Article  CAS  PubMed  Google Scholar 

  76. Roman E, Garcia-Galceran C, Torrades T, et al. Effects of an exercise programme on functional capacity, body composition and risk of falls in patients with cirrhosis: a randomized clinical trial. PLoS One. 2016;11(3):e0151652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Patel N, Muoz SJ. Bone disease in cirrhosis. Clin Liver Dis. 2015;6(4):96–9.

    Article  Google Scholar 

  78. Handzlik-Orlik G, Holecki M, Wilczynski K, Dulawa J. Osteoporosis in liver disease: pathogenesis and management. Ther Adv Endocrinol Metab. 2016;7(3):128–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Elkrief L, Rautou PE, Sarin S, Valla D, Paradis V, Moreau R. Diabetes mellitus in patients with cirrhosis: clinical implications and management. Liver Int. 2016;36(7):936–48.

    Article  CAS  PubMed  Google Scholar 

  80. Burra P. Liver abnormalities and endocrine diseases. Best Pract Res Clin Gastroenterol. 2013;27(4):553–63.

    Article  CAS  PubMed  Google Scholar 

  81. Diaz-Fontenla F, Castillo-Pradillo M, Diaz-Gomez A, et al. Refractory hepatic encephalopathy in a patient with hypothyroidism: Another element in ammonia metabolism. World J Gastroenterol. 2017;23(28):5246–52.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Marks PW. Hematologic manifestations of liver disease. Semin Hematol. 2013;50(3):216–21.

    Article  PubMed  Google Scholar 

  83. Tripodi A, Primignani M, Mannucci PM, Caldwell SH. Changing concepts of cirrhotic coagulopathy. Am J Gastroenterol. 2016;112:274.

    Article  PubMed  Google Scholar 

  84. Ghosn SH, Kibbi AG. Cutaneous manifestations of liver diseases. Clin Dermatol. 2008;26(3):274–82.

    Article  PubMed  Google Scholar 

  85. EASL. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.

    Article  Google Scholar 

  86. Bajaj JS, Moreau R, Kamath PS, et al. Acute-on-chronic liver failure: getting ready for prime-time. Hepatology. 2018;68(4):1621–32.

    Article  PubMed  Google Scholar 

  87. Gustot T, Fernandez J, Garcia E, et al. Clinical course of acute-on-chronic liver failure syndrome and effects on prognosis. Hepatology. 2015;62(1):243–52.

    Article  PubMed  Google Scholar 

  88. Artru F, Louvet A, Ruiz I, et al. Liver transplantation in the most severely ill cirrhotic patients: a multicenter study in acute-on-chronic liver failure grade 3. J Hepatol. 2017;67(4):708–15.

    Article  PubMed  Google Scholar 

  89. Levesque E, Winter A, Noorah Z, et al. Impact of acute-on-chronic liver failure on 90-day mortality following a first liver transplantation. Liver Int. 2017;37(5):684–93.

    Article  PubMed  Google Scholar 

  90. Putignano A, Gustot T. New concepts in acute-on-chronic liver failure: implications for liver transplantation. Liver Transpl. 2017;23(2):234–43.

    Article  PubMed  Google Scholar 

  91. Fagundes C, Barreto R, Guevara M, et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J Hepatol. 2013;59(3):474–81.

    Article  PubMed  Google Scholar 

Further Reading and Related Links

Download references

Acknowledgement

Conflict of interest: None.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Self Study

Self Study

1.1 Questions

  1. 1.

    Regarding AKI in Cirrhosis Which Is FALSE

    1. (a)

      Clinical manifestations are prominent and drive the diagnosis.

    2. (b)

      Once diagnosis is made, risk factors should be sought and corrected

    3. (c)

      Diagnostic criteria for AKI and HRS-AKI has been updated leading to the elimination of the Crs cut-off point of 2.5 mg/dL

    4. (d)

      The subtype HRS-AKI requires close monitoring and specific treatment based on vasoconstrictors and albumin infusion

  1. 2.

    With Regard to the Physiopathology of HE Which Is TRUE

    1. (a)

      Ammonia is the only element involved and its serum level is diagnostic.

    2. (b)

      The amount of ammonia that enters portal vein is the result of catabolism of proteins by gut bacteria and deamination of glutamine in the gut.

    3. (c)

      Systemic inflammation is not important in the pathogenesis of HE.

    4. (d)

      Kidney eliminates ammonia in urea form and is not implicated in the ammoniagenesis.

1.2 Answers

  1. 1.

    Regarding AKI in Cirrhosis Which Is FALSE

    • Right answer: a.

    • AKI doesn’t have prominent manifestations, it has to be suspected in patients with oliguria and unspecific symptoms. All the others are correct.

  2. 2.

    With Regard to the Physiopathology of HE Which Is TRUE

    • Right answer: b.

    • Ammonia is an important factor in the physiopathology of HE together with others. Inflammation is also important, especially in clinical situations where the inflammatory response is marked as ACLF. The determination of plasma ammonia levels may suggest HE but there are no cut-off points to confirm or exclude HE. Ammonia that enters portal vein from the gastrointestinal tract derives from colonic bacteria and the deamidation of glutamine in the small bowel Muscle and kidney are important organs in ammonia homeostasis. Kidney can either eliminate or generate ammonia (through glutamine metabolism).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcia-Martinez, R., Diaz-Ruiz, R., Millan, J., Bañares, R. (2020). Chronic Liver Failure and Acute-on-Chronic Liver Failure. In: Radu-Ionita, F., Pyrsopoulos, N., Jinga, M., Tintoiu, I., Sun, Z., Bontas, E. (eds) Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-24432-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24432-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24431-6

  • Online ISBN: 978-3-030-24432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics