Skip to main content

Three-Dimensional Bioprinting: Safety, Ethical, and Regulatory Considerations

  • Chapter
  • First Online:
3D Bioprinting in Medicine

Abstract

Three-dimensional (3D) bioprinting of tissues or organs holds great potential for several clinical applications in the future. Similar to all new biotechnologies, 3D bioprinting possesses both benefits and risks. Consequently, several ethical, safety, and regulatory issues have to be addressed. Ethical concerns identified involve the ownership of prototypes, harvesting and type of cells and biomaterials, research as well as commercialization of produced constructs. Safety concerns identified are linked to the biocompatibility of bioinks, ex vivo manipulation of cells, and maintenance of aseptic conditions. Regulations are vague and are under the provisions made for tissue engineering. Three-dimensional bioprinting should be considered beyond a conceptual therapy; it would require ethical oversight and the introduction of a robust regulatory framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghidini T (2018) Regenerative medicine and 3D bioprinting for human space exploration and planet colonisation. J Thorac Dis 10(Suppl 20):S2363–S2375

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tellisi N, Ashammakhi NA, Billi F, Kaarela O (2018) Three dimensional printed bone implants in the clinic. J Craniofac Surg 29:2363–2367

    PubMed  Google Scholar 

  3. Ashammakhi N, Kaarela O (2018) Three-dimensional bioprinting can help bone. J Craniofac Surg 29:9–11

    Article  PubMed  Google Scholar 

  4. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  5. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolinsky H (2014) Printing organs cell-by-cell: 3-D printing is growing in popularity, but how should we regulate the application of this new technology to health care? EMBO Rep 15:836–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tran JL (2015) Patenting bioprinting. Harvard journal of law and technology digest, 2015 symposium

    Google Scholar 

  8. Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A (2019) Minimally invasive and regenerative therapeutics. Adv Mater 31(1):e1804041

    Article  CAS  PubMed  Google Scholar 

  9. Ashammakhi N, Ahadian S, Pountos I, Hu S-K, Tellisi N, Bandaru P, Ostrovidov S, Dokmeci M, Khademhosseini A (2019) In situ three-dimensional printing for reparative and regenerative therapy. Biomed Microdevices 21(2):42

    Article  PubMed  Google Scholar 

  10. Ashammakhi N, Kaarela O, Hasan A, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A (2019) Advancing frontiers in bone bioprinting. Adv Healthc Mater 8(7):e1801048

    Article  CAS  PubMed  Google Scholar 

  11. Recommendations of the IFAA. http://www.ifaa.net/recommendations/

  12. Awaya T (2005) Common ethical issues in regenerative medicine. J Int Bioethique 16:69–75

    Article  PubMed  Google Scholar 

  13. Black J (1997) Thinking twice about “tissue engineering” [Ethical issues]. Eng Med Biol Mag IEEE 16:102–104

    Article  CAS  Google Scholar 

  14. Samanta A, Samanta JO, Price D (2004) Who owns my body—thee or me? The human tissue story continues. Clin Med 4:327–331

    Article  Google Scholar 

  15. Prockop DJ, Olson SD (2007) Clinical trials with adult stem/progenitor cells for tissue repair: let’s not overlook some essential precautions. Blood 109:3147–3151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilmut I (2004) The moral imperative for human cloning. New Sci 181:16–17

    PubMed  Google Scholar 

  17. Spencer DD, Robbins RJ, Naftolin F, Marek KL, Vollmer T, Leranth C, Roth RH, Price LH, Gjedde A, Bunney BS (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med 327:1541–1548

    Article  CAS  PubMed  Google Scholar 

  18. Freed CR, Breeze RE, Rosenberg NL, Schneck SA, Kriek E, Qi JX, Lone T, Zhang YB, Snyder JA, Wells TH (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N Engl J Med 327:1549–1555

    Article  CAS  PubMed  Google Scholar 

  19. Collins S (2001) Tissue banks: is the Federal Government’s oversight adequate? Hearing before the Committee on Governmental Affairs, US Senate, vol 264. Diane Publishing Company, Washington, DC

    Google Scholar 

  20. Pirnay JP, Vanderkelen A, Zizi M, De Vos D, Rose T, Laire G, Ectors N, Verbeken G (2010) Human cells and tissues: the need for a global ethical framework. Bull World Health Organ 88:870–872

    Article  PubMed  PubMed Central  Google Scholar 

  21. European Group on Ethics in Science and New Technologies (2002) Opinion 16: ethical aspects of patenting inventions involving human stem cells, 7 May 2002, European Commission, Brussels

    Google Scholar 

  22. Ashammakhi N, Darabi MA, Pountos I (2019) The dynamic cycle of future personalized and regenerative therapy. J Craniofac Surg 30(3):623–625

    Article  PubMed  Google Scholar 

  23. Boenink M, Swierstra T, Stemerding D (2010) Anticipating the interaction between technology and morality: a scenario study of experimenting with humans in bionanotechnology. Stud Ethics Law Technol 4:1–38

    Article  Google Scholar 

  24. House of Lords (2000) Science and Society, report of the House of Lords Select Committee on Science and Technology. HMSO, London

    Google Scholar 

  25. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  26. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69:5331–5339

    Article  CAS  PubMed  Google Scholar 

  27. Miura M, Miura Y, Padilla Nash HM, Molinolo AA, Fu B (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103

    Article  PubMed  Google Scholar 

  28. Li H, Fan X, Kovi RC, Jo Y, Moquin B (2007) Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res 67:10889–10898

    Article  CAS  PubMed  Google Scholar 

  29. Popov BV, Petrov NS, Mikhaĭlov VM, Tomilin AN, Alekseenko LL, Grinchuk TM, Zaĭchik AM (2009) Spontaneous transformation and immortalization of mesenchymal stem cells in vitro. Tsitologiia 51:91–102

    CAS  PubMed  Google Scholar 

  30. Rubio D, Garcia-Castro J, Martin MC, Fuente R, Cigudosa JC (2005) Spontaneous human adult stem cell transformation. Cancer Res 65:3035–3094

    Article  CAS  PubMed  Google Scholar 

  31. Corselli M, Parodi A, Mogni M, Sessarego N, Kunkl A, Dagna-Bricarelli F, Ibatici A, Pozzi S, Bacigalupo A, Frassoni F, Piaggio G (2008) Clinical scale ex vivo expansion of cord blood-derived outgrowth endothelial progenitor cells is associated with high incidence of karyotype aberrations. Exp Hematol 36:340–349

    Article  CAS  PubMed  Google Scholar 

  32. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M (2006) Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 24:462–471

    Article  PubMed  Google Scholar 

  33. Pountos I, Corscadden D, Emery P, Giannoudis PV (2007) Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury 38(Suppl 4):S23–S33

    Article  PubMed  Google Scholar 

  34. Schallmoser K, Bartmann C, Rohde E, Bork S, Guelly C, Obenauf AC, Reinisch A, Horn P, Ho AD, Strunk D, Wagner W (2010) Replicative senescence-associated gene expression changes in mesenchymal stromal cells are similar under different culture conditions. Haematologica 95:867–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van der Valk J, Gstraunthaler G (2017) Fetal bovine serum (FBS)—a pain in the dish? Altern Lab Anim 45:329–332

    Article  PubMed  Google Scholar 

  36. Gstraunthaler G (2003) Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX 20:275–281

    PubMed  Google Scholar 

  37. van der Valk J, Brunner D, De Smet K, Fex Svenningsen A, Honegger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G (2010) Optimization of chemically defined cell culture media—replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro 24:1053–1063

    Article  CAS  PubMed  Google Scholar 

  38. Chachques JC, Herreros J, Trainini J, Juffe A, Rendal E, Prosper F, Genovese J (2004) Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. Int J Cardiol 95(Suppl 1):S29–S33

    Article  PubMed  Google Scholar 

  39. Selvaggi TA, Walker RE, Fleisher TA (1997) Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood 89:776–779

    Article  CAS  PubMed  Google Scholar 

  40. Tuschong L, Soenen SL, Blaese RM, Candotti F, Muul LM (2002) Immune response to fetal calf serum by two adenosine deaminase-deficient patients after T cell gene therapy. Hum Gene Ther 13:1605–1610

    Article  CAS  PubMed  Google Scholar 

  41. WHO. Guidelines on tissue infectivity distribution in transmissible spongiform encephalopathies. http://www.who.int/bloodproducts/cs/TSEPUBLISHEDREPORT.pdf?ua=1

  42. Dimasi L (2011) Meeting increased demands on cell-based processes by using defined media supplements. Bioprocess J 9:8

    Google Scholar 

  43. Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O’Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells 23:315–323

    Article  CAS  PubMed  Google Scholar 

  44. Adil M, Schaffer DV (2017) Expansion of human pluripotent stem cells. Curr Opin Chem Eng 15:24–35

    Article  Google Scholar 

  45. Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, Abraham E, Eaker SS, Yong TK, Chan A, Griffiths S, Wehn AK, Oh S, Karnieli O (2017) A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 19(2):155–169

    Article  CAS  PubMed  Google Scholar 

  46. Cimino M, Gonçalves RM, Barrias CC, Martins MCL (2017) Xeno-free strategies for safe human mesenchymal stem/stromal cell expansion: supplements and coatings. Stem Cells Int 2017:6597815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burnouf T, Strunk D, Koh MB, Schallmoser K (2016) Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 76:371–387

    Article  CAS  PubMed  Google Scholar 

  48. Koller MR, Maher RJ, Manchel I, Oxender M, Smith AK (1998) Alternatives to animal sera for human bone marrow cell expansion: human serum and serum-free media. J Hematother 7:413–423

    Article  CAS  PubMed  Google Scholar 

  49. Lin HT, Tarng YW, Chen YC, Kao CL, Hsu CJ, Shyr YM, Ku HH, Chiou SH (2005) Using human plasma supplemented medium to cultivate human bone marrow-derived mesenchymal stem cell and evaluation of its multiple-lineage potential. Transplant Proc 37:4504–4505

    Article  PubMed  Google Scholar 

  50. Stute N, Holtz K, Bubenheim M, Lange C, Blake F, Zander AR (2004) Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Exp Hematol 32:1212–1225

    Article  CAS  PubMed  Google Scholar 

  51. Lohmann M, Walenda G, Hemeda H, Joussen S, Drescher W, Jockenhoevel S, Hutschenreuter G, Zenke M, Wagner W (2012) Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PLoS One 7(5):e37839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pountos I, Georgouli T, Henshaw K, Bird H, Giannoudis PV (2013) Release of growth factors and the effect of age, sex, and severity of injury after long bone fracture. A preliminary report. Acta Orthop 84:65–70

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pountos I, Georgouli T, Giannoudis PV (2008) The effect of autologous serum obtained after fracture on the proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Mol Biol (Noisy-le-Grand) 54:33–39

    CAS  Google Scholar 

  54. Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S, Rodeghiero F (2016) Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther 7:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Salunkhe V, van der Meer PF, de Korte D, Seghatchian J, Gutiérrez L (2015) Development of blood transfusion product pathogen reduction treatments: a review of methods, current applications and demands. Transfus Apher Sci 52:19–34

    Article  PubMed  Google Scholar 

  56. Mundt JM, Rouse L, Van den Bossche J, Goodrich RP (2014) Chemical and biological mechanisms of pathogen reduction technologies. Photochem Photobiol 90:957–964

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Goodrich RP, Segatchian J (2018) Special considerations for the use of pathogen reduced blood components in pediatric patients: an overview. Transfus Apher Sci 57:374–377

    Article  PubMed  Google Scholar 

  58. Reddy HL, Dayan AD, Cavagnaro J, Gad S, Li J, Goodrich RP (2008) Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfus Med Rev 22:133–153

    Article  PubMed  Google Scholar 

  59. Ciaravi V, McCullough T, Dayan AD (2001) Pharmacokinetic and toxicology assessment of INTERCEPT (S-59 and UVA treated) platelets. Hum Exp Toxicol 20:533–550

    Article  CAS  PubMed  Google Scholar 

  60. Pountos I, Georgouli T, Henshaw K, Howard B, Giannoudis PV (2014) Mesenchymal stem cell physiology can be affected by antibiotics: an in vitro study. Cell Mol Biol (Noisy-le-Grand) 60:1–7

    CAS  Google Scholar 

  61. Yamaoka E, Hiyama E, Sotomaru Y, Onitake Y, Fukuba I, Sudo T, Sueda T, Hiyama K (2011) Neoplastic transformation by TERT in FGF-2-expanded human mesenchymal stem cells. Int J Oncol 39:5–11

    CAS  PubMed  Google Scholar 

  62. Pountos I, Panteli M, Georgouli T, Giannoudis PV (2014) Neoplasia following use of BMPs: is there an increased risk? Expert Opin Drug Saf 13:1525–1534

    Article  CAS  PubMed  Google Scholar 

  63. Barcak EA, Beebe MJ (2017) Bone morphogenetic protein: is there still a role in orthopedic trauma in 2017? Orthop Clin North Am 48:301–309

    Article  PubMed  Google Scholar 

  64. Gilbert F, O’Connell CD, Mladenovska T, Dodds S (2018) Print me an organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci Eng Ethics 24:73–91

    Article  PubMed  Google Scholar 

  65. Gstraunthaler G, Lindl T, van der Valk J (2013) A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology 65:791–793

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gstraunthaler G, Lindl T, van der Valk J (2014) A severe case of fraudulent blending of fetal bovine serum strengthens the case for serum-free cell and tissue culture applications. Altern Lab Anim 42:207–209

    Article  CAS  PubMed  Google Scholar 

  67. Smith DS (2006) The Government’s role in advancing regenerative medicine and tissue engineering–science, safety, and ethics. Periodontology 41:16–29

    Article  Google Scholar 

  68. Heinonen M, Oila O, Nordström K (2005) Current issues in the regulation of human tissue-engineering products in the European Union. Tissue Eng 11:1905–1911

    Article  PubMed  Google Scholar 

  69. Gheisari Y, Baharvand H, NayerniaK VM (2012) Stem cell and tissue engineering research in the Islamic republic of Iran. Stem Cell Rev Rep 8:629–639

    Article  CAS  PubMed  Google Scholar 

  70. Neely EL (2016) The risks of revolution: ethical dilemmas in 3D printing from a US perspective. Sci Eng Ethics 22:1285–1297

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ippokratis Pountos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pountos, I., Tellisi, N., Ashammakhi, N. (2019). Three-Dimensional Bioprinting: Safety, Ethical, and Regulatory Considerations. In: Guvendiren, M. (eds) 3D Bioprinting in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-23906-0_7

Download citation

Publish with us

Policies and ethics