Skip to main content

Strategic Role of Fungal Laccases in Biodegradation of Lignin

  • Chapter
  • First Online:
Mycodegradation of Lignocelluloses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Lignin is a complex organic material connecting cells, fibers, and vessels which constitute wood and other lignified components of the vascular plants. Because of its complex structure consolidated by three-dimensional cross-linking, it is highly inflexible and recalcitrant. The degradation of lignin is required for the efficient utilization of lignocellulosic biomass for the production of biofuels and other cellulose-based products. Removal of lignin is also necessary for the production of paper from wood during the process of delignification and bleaching. Existing physico-chemical methods of lignin degradation are cost and energy incentive and result in generation of toxic waste products. Biodegradation of lignin involving lignin-degrading microbes and their enzyme system is more efficient and environmentally sound approach. Biodegradation of lignin is considered as sustainable technology for the disposal of lignocellulosic biomass and its utilization for the production of value-added products. Among microbes, white rot fungi efficiently degrade lignin with the help of their oxidative extracellular ligninolytic enzymes in general and laccases (benzenediol oxygen oxidoreductase, EC 1.10.3.2) in particular. Laccases are multinuclear enzymes which effectively degrade lignin. In the presence of suitable mediators, laccases hold the potential to oxidize non-phenolic proportion of lignin and other substrates. In the backdrop of aforesaid context, this chapter is an attempt to put forth the details of role of fungal laccases and laccase mediator system in degradation of lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ademakinwa AN, Agboola FK (2016) Biochemical characterization and kinetic studies on a purified yellow laccase from newly isolated Aureobasidium pullulans NAC8 obtained from soil containing decayed plant matter. J Genet Eng Biotechnol 14(1):143–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Afreen S, Anwer R, Singh RK et al (2018) Extracellular laccase production and its optimization from Arthrospira maxima catalyzed decolorization of synthetic dyes. Saudi J Biol Sci 25:1446–1453

    Article  CAS  PubMed  Google Scholar 

  • Agarwal UP, Ralph SA, Reiner RS et al (2018) Production of high lignin-containing and lignin-free cellulose nanocrystals from wood. Cellulose 25:5791–5805

    Article  CAS  Google Scholar 

  • Andreu G, Vidal T (2011) Effects of laccase-natural mediator systems on kenaf pulp. Bioresour Technol 102(10):5932–5937

    Article  CAS  PubMed  Google Scholar 

  • Archibald FS, Bourbonnais R, Jurasek L et al (1997) Kraft pulp bleaching and delignification by Trametes versicolor. J Biotechnol 53:215–236

    Article  CAS  Google Scholar 

  • Avanthi A, Banerjee R (2016) A strategic laccase mediated lignin degradation of lignocellulosic feedstocks for ethanol production. Ind Crop Prod 92:174–185

    Article  CAS  Google Scholar 

  • Balakshin MY, Capanema EA, Chang HM (2009) Recent advances in the isolation and analysis of lignins and lignin-carbohydrate complexes. In: Hu TQ (ed) Characterization of lignocellulosic materials. Blackwell Publishing Ltd, Oxford, pp 148–170

    Google Scholar 

  • Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Barreca AM, Sjögren B, Fabbrini M, Gentili P (2004) Catalytic efficiency of some mediators in laccase-catalyzed alcohol oxidation. Biocat Biotransform 22(2):105–112

    Article  CAS  Google Scholar 

  • Bertrand B, Martínez-Morales F, Trejo-Hernandez MR (2013) Fungal laccases: induction and production. Rev Mex Ing Quim 12:473–488

    CAS  Google Scholar 

  • Bettin F, Montanari Q, Calloni R et al (2009) Production of laccases in submerged process by Pleurotus sajor-caju PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80. J Ind Microbiol Biotechnol 36(1):1–9

    Google Scholar 

  • Bibi I, Bhatti HN, Asgher M (2011) Comparative study of natural and synthetic phenolic compounds as efficient laccase mediators for the transformation of cationic dye. Biochem Eng J 56:225–231

    Article  CAS  Google Scholar 

  • Bilal M, Asgher M, Parra-Saldivar R et al (2017) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants—a review. Sci Total Environ 576:646–659

    Article  CAS  PubMed  Google Scholar 

  • Bourbonnais R, Paice M (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 207:99–102

    Article  Google Scholar 

  • Bourbonnais R, Paice MG, Reid ID et al (1995) Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2′-azinobis(3 ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol 61:1876–1880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourbonnais R, Paice MG, Freiermuth B (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63(12):4627–4632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brijwani K, Rigdon A, Vadlani PV (2010) Fungal laccase: production function and applications in food processing. Enzyme Res 10:149–748

    Google Scholar 

  • Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, specially laccase-mediator-system (Lignozyme®-process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  • Camarero S, Galletti GC, Martínez AT (1994) Preferential degradation of phenolic lignin units by two white rot fungi. Appl Environ Microbiol 60:4509–4516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    Article  CAS  PubMed  Google Scholar 

  • Cardoso WS, Queiroz PV, Tavares GP et al (2018) Multi-enzyme complex of white rot fungi in saccharification of lignocellulosic material. Braz J Microbiol 49:879–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto SR (2018) Solid-state fermentation for laccases production and their applications. In: Current developments in biotechnology and bioengineering. Elsevier, pp 211–234

    Google Scholar 

  • Couto SR, Toca-Herrera JL (2007) Laccase production at reactor scale by filamentous fungi. Biotechnol Adv 25:558–569

    Article  CAS  PubMed  Google Scholar 

  • Daroch M, Houghton CA, Moore JK et al (2014) Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa. Enzym Microb Technol 58(59):1–7

    Article  CAS  Google Scholar 

  • Dong JL, Zhang YW, Zhang RH et al (2005) Influence of culture conditions on laccase production and isozyme patterns in the white-rot fungus Trametes gallica. J Basic Microbiol 45:190–198

    Article  CAS  PubMed  Google Scholar 

  • dos Santos AC, Ximenes E, Kim Y, Ladisch MR (2019) Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol 37(5):518–531. https://doi.org/10.1016/j.tibtech.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  • Elisashvili V, Kachlishvili E, Asatiani D (2018) Efficient production of lignin-modifying enzymes and phenolics removal in submerged fermentation of olive mill by-products by white-rot basidiomycetes. Int Biodeterior Biodegrad 134:39–47

    Article  CAS  Google Scholar 

  • Enguita FJ (2011) Structural biology of fungal multicopper oxidases. In: Leitao AL (ed) Mycofactories. Bentham Science Publishers, Emirate of Sharjah, pp 57–72

    Google Scholar 

  • Fabbrini M, Galli C, Gentili P (2002) Comparing the catalytic efficiency of some mediators of laccase. J Mol Catal B Enzym 16:231–240

    Article  CAS  Google Scholar 

  • Faravelli T, Frassoldati A, Migliavacca G (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34(3):290–301

    Article  CAS  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    CAS  PubMed  Google Scholar 

  • Gosz K, Kosmela P, Hejna A et al (2018) Biopolyols obtained via microwave-assisted liquefaction of lignin: structure, rheological, physical and thermal properties. Wood Sci Technol 52:599–617

    Article  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hatakka A (2005) Biodegradation of lignin. In: Alexander S (ed) Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Hilgers R, Vincken JP, Gruppen H (2018) Laccase/mediator systems: their reactivity toward phenolic lignin structures. ACS Sustain Chem Eng 6:2037–2046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiswal N, Pandey VP, Dwivedi UN (2015) Immobilization of papaya laccase in chitosan led to improved multipronged stability and dye discoloration. Int J Biol Macromol 8:288–295

    Google Scholar 

  • Kannaiyan R, Mahinpey N, Mani T et al (2012) Enhancement of Dichomitus squalens tolerance to copper and copper-associated laccase activity by carbon and nitrogen sources. Biochem Eng J 67:140–147

    Google Scholar 

  • Khlifi-Slama R, Mechichi T, Sayadi S et al (2012) Effect of natural mediators on the stability of Trametes trogii laccase during the decolourization of textile wastewaters. J Microbiol 50:226–234

    Article  CAS  PubMed  Google Scholar 

  • Kiiskinen L-L, Palonen H, Linder M, Viikari L, Kruus K (2004) Laccase from Melanocarpus albomyces binds effectively to cellulose. FEBS Lett 576:251–255

    Article  CAS  PubMed  Google Scholar 

  • Knezevic A, Milovanović I, Stajić M et al (2013) Lignin degradation by selected fungal species. Bioresour Technol 138:117–123

    Article  CAS  PubMed  Google Scholar 

  • Kolomytseva M, Myasoedova N, Samoilova A et al (2017) Rapid identification of fungal laccases/oxidases with different pH-optimum. Process Biochem 62:174–183

    Article  CAS  Google Scholar 

  • Kumar SVS, Phale PS, Durani S (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394

    Article  CAS  PubMed  Google Scholar 

  • Li K, Xu F, Eriksson KE (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65:2654–2660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mainka H, Täger O, Körner E et al (2015) Lignin—an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Mater Res Technol 4:283–296

    Article  CAS  Google Scholar 

  • Matera I, Gullotto A, Tilli S et al (2008) Crystal structure of the blue multicopper oxidase from the white-rot fungus Trametes trogii complexed with p-toluate. Inorg Chim Acta 361:4129–4137

    Article  CAS  Google Scholar 

  • Mikiashvili N, Wasser SP, Nevo E (2006) Effects of carbon and nitrogen sources on Pleurotus ostreatus ligninolytic enzyme activity. World J Microbiol Biotechnol 22:999–1002

    Article  CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Gorbacheva MA et al (2007) “Blue” laccases. J Biochem 72(10):1136–1150

    CAS  Google Scholar 

  • Mot AC, Silaghi-Dumitrescu R (2012) Laccases: complex architectures for one-electron oxidations. Biochemistry (Mosc) 77(12):1395–1407

    Article  CAS  Google Scholar 

  • Moya R, Saastamoinen P, Hernández M et al (2011) Reactivity of bacterial and fungal laccases with lignin under alkaline conditions. Bioresour Technol 102(21):10006–10012

    Article  CAS  PubMed  Google Scholar 

  • Munk L, Punt AM, Kabel MA (2018) Laccase catalyzed grafting of-N-OH type mediators to lignin via radical-radical coupling. RSC Adv 7(6):3358–3368

    Article  Google Scholar 

  • Murciano Martínez P, Punt AM, Kabel MA et al (2016) Deconstruction of lignin linked p-coumarates, ferulates and xylan by NaOH enhances the enzymatic conversion of glucan. Bioresour Technol 216:44–51

    Article  CAS  PubMed  Google Scholar 

  • Musatti A, Ficara E, Mapelli C (2017) Use of solid digestate for lignocellulolytic enzymes production through submerged fungal fermentation. J Environ Manag 199:1–6

    Article  CAS  Google Scholar 

  • Ning YJ, Wang SS, Chen QJ, Ling ZR, Wang SN, Wang WP, Zhang GQ, Zhu MJ (2016) An extracellular yellow laccase with potent dye decolorizing ability from the fungus Leucoagaricus naucinus LAC-04. Int J Biol Macromol 93:837–842

    Article  CAS  PubMed  Google Scholar 

  • Palmieri G, Giardina P, Bianco C et al (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307

    Article  CAS  PubMed  Google Scholar 

  • Piscitelli A, Pezzella C, Giardina P (2010) Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1:252–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Plácido J, Capareda S (2015) Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour Bioprocess 2:23

    Article  Google Scholar 

  • Pointing SB, Jones EBG, Vrijmoed LLP (2000) Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92(1):139–144

    Article  CAS  Google Scholar 

  • Poppius-Levlin K, Whang W, Tamminen T et al (1999) Effects of laccase/HBT treatment on pulp and lignin structures. J Pulp Pap Sci 25:90–94

    CAS  Google Scholar 

  • Potthast A, Koch H, Fischer K (1997) The laccase-mediator system—reaction with model compounds and pulp. In: Preprints 9th international symposium wood pulp (Montreal, Canada), S. F1-4–F1-8. Chem Tech Section F2-1–F2-4

    Google Scholar 

  • Pozdnyakova N, Rodakiewicz-Nowak J, Turkovskaya O (2004) Catalytic properties of yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 30:19–24

    Article  CAS  Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006a) Oxidative degradation of polyaromatic hydrocarbons and their derivatives catalyzed directly by the yellow laccase from Pleurotus ostreatus D1. J Mol Catal B Enzym 41:8–15

    Article  CAS  Google Scholar 

  • Pozdnyakova NN, Turkovskaya OV, Yudina EN (2006b) Yellow laccase from the fungus Pleurotus ostreatus D1: purification and characterization. Appl Biochem Microbiol 42(1):56–61

    Google Scholar 

  • Prasad R (2018) Mycoremediation and environmental sustainability. Springer International Publishing, Cham

    Book  Google Scholar 

  • Reddy GV, Ravindra BP, Komaraiah P (2003) Utilization of banana waste for the production of lignolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38:1457–1462

    Article  CAS  Google Scholar 

  • Rivera-Hoyos CM, Morales-Alverez ED, Poutou-Pinales RA et al (2013) Fungal laccases. Fungal Biol Rev 27(3–4):67–82

    Article  Google Scholar 

  • Robinson T, Chandran B, Nigam P (2001) Studies on the production of enzymes by white-rot fungi for the decolourisation of textile dyes. Enzyme Microb Technol 29:575–579

    Article  CAS  Google Scholar 

  • Rodriguez Couto S, Rodríguez A, Paterson RRM, Lima N, Teixeira JA (2006) Laccase activity from the fungus Trametes hirsuta using an air‐lift bioreactor. Lett Appl Microbiol 42(6):612–616

    Google Scholar 

  • Rudakiya DM, Gupte A (2017) Degradation of hardwoods by treatment of white rot fungi and its pyrolysis kinetics studies. Int Biodeter Biodegr 120:21–35

    Article  CAS  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rytioja J, Hildén K, Mäkinen S et al (2014) Saccharification of lignocelluloses by Carbohydrate Active Enzymes of the white rot fungus Dichomitus squalens. PLoS One 10(12):e0145166

    Article  CAS  Google Scholar 

  • Saito Y, Tsuchida H, Matsumoto T et al (2018) Screening of fungi for decomposition of lignin-derived products from Japanese cedar. J Biosci Bioeng 126:573–579

    Article  CAS  PubMed  Google Scholar 

  • Schlosser D, Hofer C (2002) Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Appl Environ Microbiol 68(7):3514–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar S, Shikha (2011) Fungal laccases: production and biotechnological applications in pulp and paper industry. In: Jain PK, Gupta VK, Bajpai V (eds) Recent advances in environmental biotechnology. Dudweller Landstr, Saarbrücken, pp 73–111

    Google Scholar 

  • Shankar S, Shikha (2012) Laccase production and enzymatic modification of lignin by a novel Peniophora sp. Appl Biochem Biotechnol 166:1082–1094

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Shikha (2015) Effects of metal ions and redox mediator system on decolorization of synthetic dyes by crude laccase from a novel white rot fungus Peniophora sp. (NFCCI-2131). Appl Biochem Biotechnol 175(1):635–647

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832

    Article  CAS  Google Scholar 

  • Sigoillot JC, Berrin JG, Bey M et al (2012) Fungal strategies for lignin degradation. In: Jouanin L, Lapierre C (eds) Lignins: biosynthesis, biodegradation and bioengineering, vol 61. Academic, Elsevier, London, pp 263–308

    Chapter  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation, 1st edn. Wiley-Interscience. ISBN-13: 978-0471755012

    Google Scholar 

  • Siqueira G, Várnai A, Ferraz A et al (2012) Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Appl Energy 102:399–402

    Article  CAS  Google Scholar 

  • Surwase SV, Patil SA, Srinivas S et al (2016) Interaction of small molecules with fungal laccase: a surface plasmon resonance based study. Enzym Microb Technol 82:110–114

    Article  CAS  Google Scholar 

  • Thiruchelvam AT, Ramsay JA (2007) Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor. Appl Microbiol Biotechnol 74:547–554

    Article  CAS  PubMed  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Wang SN, Chen QJ, Zhu MJ et al (2018) An extracellular yellow laccase from white rot fungus Trametes sp. F1635 and its mediator systems for dye decolorization. Biochimie 148:46–54

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Ozaki H, Terashima Y et al (1996) Activities of ligninolytic enzymes of the white rot fungus, and its recalcitrant substance degradability. Water Sci Technol 34:69–78

    Article  Google Scholar 

  • Xavier AMRB, Evtuguin DV, Ferreira RMP et al (2001) Laccase production for lignin oxidative activity. In: Proceedings of the 8th international conference on biotechnology in the pulp and paper industry, 4–8 June, Helsinki

    Google Scholar 

  • Xu F (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272(2):924–928

    Article  CAS  PubMed  Google Scholar 

  • Yaohua G, Ping X, Feng J et al (2019) Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole. J Hazard Mater 365:118–124

    Article  CAS  PubMed  Google Scholar 

  • Young D, Dollhofer V, Callaghan TM et al (2018) Isolation, identification and characterization of lignocellulolytic aerobic and anaerobic fungi in one- and two-phase biogas plants. Bioresour Technol 268:470–479

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Zhang X, Cui DZ (2012) Characterisation of a novel white laccase from the deuteromycete fungus Myrothecium verrucaria NF-05 and its decolourisation of dyes. PLoS One 7:e38817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Ouyang X, Jiang L et al (2016) Effect of functional groups on hydrogenolysis of lignin model compounds. Fuel Process Technol 154:132–138

    Article  CAS  Google Scholar 

  • Zille A, Tzanov T, Gübitz GM (2003) Immobilized laccase for decolourization of reactive black 5 dyeing effluent. Biotechnol Lett 25:1473–1477

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shankar, S., Singh, S., Shikha, Mishra, A., Ram, S. (2019). Strategic Role of Fungal Laccases in Biodegradation of Lignin. In: Naraian, R. (eds) Mycodegradation of Lignocelluloses. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-23834-6_7

Download citation

Publish with us

Policies and ethics