Skip to main content

Ramie (Boehmeria nivea L. Gaud) Genetic Improvement

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Industrial and Food Crops

Abstract

Ramie (Boehmeria nivea L. Gaud) is a wonderful fiber-producing plant species, but it has not received adequate care and attention from researchers. Ramie fiber is considered the longest, strongest and most durable of all known plant fibers. The fiber is composed of pure cellulose being resistant to microbial attacks. Ramie leaves are highly nutritious and can be used food as well as animal feed. In addition, different parts of the plant are used in traditional medicine in many Asian countries. Despite its high value as fiber, food, feed or medicine, the cultivation of ramie has been declining over the past 50 years. Ramie cultivation has principally been limited to China under traditional farming system. The productivity and profitability of ramie farming systems are declining gradually, although industrial demand remains high. Under this backdrop, we discuss the status of genetic improvement and cultivar development in ramie that helped to sustain production despite a decrease in area under cultivation. Also, recent progress on genetic and genomic resources have been reviewed, including genome sequencing, transcriptome characterization, diversity analysis, genetic map construction and transgenic cultivar development, which provide new opportunities to improve the genetic make-up of the cultivars for better productivity, higher resistance to biotic and abiotic stresses and improvements in fiber quality. Integration of conventional and molecular breeding methodologies are also emphasized for development of new, end-use specific cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya N, Yonekura K, Suzuki M (2003) Cytological studies of genus Boehmeria Jacq. (Urticaeae) in Nepal. J Japan Bot 78:95–102

    Google Scholar 

  • Al-Ani L, Deyholos MK (2018) Transcriptome assembly of the bast fiber crop, ramie, Boehmeria nivea (L.) Gaud. (Urticaceae). Fibers 6:8. https://doi.org/10.3390/fib6010008

    Article  CAS  Google Scholar 

  • An X, Wang B, Liu LJ et al (2014) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud]. Mol Biol Rep 41:3257–3269

    Article  CAS  PubMed  Google Scholar 

  • An X, Chen J, Zhang J et al (2015) Transcriptome profiling and identification of transcription factors in ramie (Boehmeria nivea L. Gaud) in response to PEG treatment, using Illumina paired-end sequencing technology. Int J Mol Sci 16:3493–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An X, Zhang J, Liao Y et al (2017) Senescence is delayed when ramie (Boehmeria nivea L.) is transformed with the isopentyl transferase (ipt) gene under control of the SAG12 promoter. FEBS Open Bio 7:636–644. https://doi.org/10.1002/2211-5463.12191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anonymous (1989) The cultivation and utilization of ramie in the United States of America. Science 13(313):75–78. https://doi.org/10.1126/science.ns-13.313.75

    Article  Google Scholar 

  • Banerjee P, Ray DP, Biswas PK (2016) Effect of inherent soil nutrients on yield and quality of ramie (Boehmeria nivea L.) fiber. Intl J Agric Environ Biotechnol 9(6):1031–1037. https://doi.org/10.5958/2230-732X.2016.00131.5

    Article  Google Scholar 

  • Bellwood P, Cameron J, Viet NV et al (2007) Ancient boats, boat timbers, and locked mortise-and-tenon joints from Bronze/Iron-Age Northern Vietnam. Int J Naut Archaeol 36:2–20. https://doi.org/10.1111/j.1095-9270.2006.00128.x

    Article  Google Scholar 

  • Benn CD (2002) Daily life in traditional China: the Tang dynasty. Greenwood Press, Westport

    Google Scholar 

  • Bergfjord C, Mannering U, Frei KM et al (2012) Nettle as a distinct bronze age textile plant. Sci Rep 2:664. https://doi.org/10.1038/srep00664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter HA (1910) Ramie (rhea) China grass: the new textile fiber. The Technical Publishing Co. Limited, England

    Google Scholar 

  • Chatterjee H, Bhattacharya SS (1957) Cytology of ramie. Proc Ind Sci Congr 3:76

    Google Scholar 

  • Chen RX, Luo LY, Zou SJ (1993) Evaluation of ramie resources and elite germplasm in Guizhou province. Crop Genet Resour 2:10–11

    Google Scholar 

  • Chen CJ, Lin Q, Friis I et al (2003) Urticaceae. Flora China 5:76–189

    Google Scholar 

  • Chen JH, Luan MB, Xu Y (2011) Construction of core germplasm in ramie. Plant Fiber Sci China 33:5964

    Google Scholar 

  • Chen J, Liu F, Tang Y et al (2014a) Transcriptome sequencing and profiling of expressed genes in phloem and xylem of ramie (Boehmeria nivea L. gaud). PLoS One 9:e110623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Pei Z, Dai L et al (2014b) Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie (Boehmeria nivea L.). BMC Genomics 15:919

    Article  PubMed  PubMed Central  Google Scholar 

  • Christodoulou MS, Calogero F, Baumann M et al (2015) Boehmeriasin A as new lead compound for the inhibition of topoisomerases and SIRT2. Eur J Med Chem 92:766–775. https://doi.org/10.1016/j.ejmech.2015.01.038

    Article  CAS  PubMed  Google Scholar 

  • Deka BC, Talukdar P (1997) Evaluation of ramie germplasm. Indian J Plant Genet Resour 10:191–195

    Google Scholar 

  • Dos Santos LED, Da Cunha EA, Roda DS et al (1995) Produção de leiteemcaprinosalimentados com niveiscrescentes de rami (Boehmeria nivea, Gaud.). B Industr Anim N Odessa 52:153–159

    Google Scholar 

  • Dusi DMA, Dubald M, de Almeida E et al (1993) Transgenic plants of ramie (Boehmeria nivea Gaud.) obtained by Agrobacterium mediated transformation. Plant Cell Rep 12:625–628

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2018). http://www.fao.org/faostat. Accessed 13 Feb 2018

  • Ferreira WM, Sartori AL, Santiago GS et al (1997) Apparent digestibility of ramie hay (Boehmeria nivea, G.), pigeon pea hay (Cajanus cajan L.), perennial soybean hay (Glycine wightii, V.) and bean husk (Phaseolus vulgaris L.) on growing rabbits. Arq Bras Med Vet Zootec 49:465–472

    Google Scholar 

  • Fu JP, Wang B, Liu LJ et al (2009) Transgenic Ramie with Bt gene mediated by Agrobacterium tumefaciens and evaluation of its pest-resistance. Acta Agron Sin 5:1771–1777. https://doi.org/10.3724/SP.J.1006.2009.01771

    Article  CAS  Google Scholar 

  • Gao G, Xiong H, Chen K et al (2017) Gene expression profiling of ramie roots during hydroponic induction and adaption to aquatic environment. Genomics Data 14:32–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawande SP, Sharma AK (2016) Conservation and utilization of ramie (Boehmeria nivea L. gaud.) germplasm for identification of resistant sources against anthracnose leaf spot. Vegetos 29:137–141

    Google Scholar 

  • Guo QQ, Yang RF (1996) Comparative studies on the mutagenic effects of radiation breeding with different ramie material. J Hunan Agric Univ 22(4):333–336

    CAS  Google Scholar 

  • Hendrickx K (2007) The origin of banana-fiber cloth in the Ryukyus, Japan. Lueven University Press, Leuven

    Book  Google Scholar 

  • Hou SM, Duan JQ, Liang XN et al (2006) Detection for mtDNA of cytoplasmic male sterile (CMS) line and maintainer line of ramie [Boehmeria nivea (L.) gaud.] by ISSR. Plant Physiol Commun 42:705–707

    CAS  Google Scholar 

  • Huang KL, Lai YK, Lin CC (2006) Inhibition of hepatitis B virus production by Boehmeria nivea root extract in HepG2 2.2.15 cells. World J Gastroenterol 12(35):5721–5725

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang HQ, Liu JD, Duan JQ et al (2012) Cloning and characterization of the mitochondrial genes cox II and atpA from ramie (Boehmeria nivea (L.) gaud.) and their possible role in cytoplasmic male sterility. Can J Plant Sci 92:1295–1304

    Article  CAS  Google Scholar 

  • Huang X, Chen J, Bao Y et al (2014) Transcript profiling reveals auxin and cytokinin signaling pathways and transcription regulation during in vitro organogenesis of ramie (Boehmeria nivea L. gaud). PLoS One 9(11):e113768. https://doi.org/10.1371/journal.pone.0113768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YB, Jie YC (2005) Advances in research on the genetic relationships of Boehmeria in China. J Plant Genet Resour 5. http://en.cnki.com.cn/Article_en/CJFDTotal-ZWYC200501024.htm

  • Jie YC, Zhou QW, Chen PD (1999) Genetic relation analysis of ramie genetypes with RAPD marker. China Fiber Crops 21:1–6

    Google Scholar 

  • Kozlowaski R, Rawluk M, Barriga-Bedoya J (2005) Ramie. In: Frank RR (ed) Bast and leaf fiber crops. Woodhead Publishing Limited, UK and CRC Press LLC, USA, pp 207–227

    Google Scholar 

  • Kuhn D (1988) Science and civilisation in China: volume 5, chemistry and chemical technology, part 9, textile technology: spinning and reeling. Cambridge University Press, London

    Google Scholar 

  • Lee H, Joo N (2012) Optimization of pan bread prepared with ramie powder and preservation of optimized pan bread treated by gamma irradiation during storage. Prev Nutr Food Sci 17(1):53–63. https://doi.org/10.3746/pnf.2012.17.1.053

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Woo KS, Jeong HS, Kim WJ (2010) Quality characteristics of muffins with added Dukeum (pan-fried) ramie leaf (Boehmeria nivea) powder using response surface methodology. Korean J Food Cult 25:810–819

    Google Scholar 

  • Li JJ, Guo QQ, Chen JR (2006) RAPD analysis of lignin content for 21 ramie varieties. Plant Fibers Products 28:120–124

    Google Scholar 

  • Li Z, Chen J, Zhou J et al (2016) High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 22:548–557

    Article  CAS  Google Scholar 

  • Liang XN, Liu FH, Zhang SW et al (1999) Analyses on physiological and biochemical properties of 6 varieties of ramie from Jiangxi Province. Plant Physiol Commun 35:281–284

    CAS  Google Scholar 

  • Liao L, Li TJ, Liu ZL et al (2009) Phylogenetic relationship of ramie and its wild relatives based on cytogenetics and DNA analyses. Acta Agron Sin 35:1778–1790

    CAS  Google Scholar 

  • Liao L, Li T, Zhang J et al (2014) The domestication and dispersal of the cultivated ramie (Boehmeria nivea (L.) Gaud. inFreyc.) determined by nuclear SSR marker analysis. Genet Resour Crop Evol 61:55–67

    Article  Google Scholar 

  • Lin CC, Yen MH, Lo TS et al (1998) Evaluation of the hepatoprotective and antioxidant activity of Boehmeria nivea var. nivea and B. nivea var. tenacissima. J Ethnopharmacol 60:9–17

    Article  CAS  PubMed  Google Scholar 

  • Liu FH, Liang XN, Huang HQ (1998) Identification of fertility in ramie male sterile line. Acta Agric Univ Jiangxiensis 20:197–198

    CAS  Google Scholar 

  • Liu LJ, Sun ZX, Peng DX (2006) Optimization for ISSR reaction system in ramie (Boehmeria nivea L. Gaud.). Chin Agric Sci Bull 22:64–68

    CAS  Google Scholar 

  • Liu LJ, Peng DX, Wang B (2008) Genetic relation analysis on ramie (Boehmeria nivea L. Gaud.) inbred lines by SRAP markers. Agric Sci China 7:944–949

    Article  CAS  Google Scholar 

  • Liu FH, Huang HQ, Zhang SW et al (2011) Photo-temperature response of ramie (Boehmeria nivea (L.) Gaud.) male sterile lines. Agril Sci 2:111–116

    CAS  Google Scholar 

  • Liu XL, Zhang SW, Duan JQ et al (2012) Mitochondrial genes atp6 and atp9 cloned and characterized from ramie (Boehmeria nivea (L.) Gaud.) and their relationship with cytoplasmic male sterility. Mol Breeding 30:23–32

    Article  CAS  Google Scholar 

  • Liu T, Zhu S, Tang Q et al (2013a) Identification of drought stress-responsive transcription factors in ramie (Boehmerianivea L. Gaud). BMC Genomics 13:130

    Article  CAS  Google Scholar 

  • Liu T, Zhu S, Fu L et al (2013b) Development and characterization of 1827 expressed sequence-tag derived simple sequence repeat markers in ramie (Boehmeria nivea L. Gaud). PLoS One 8:e60346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Zhu S, Tang Q et al (2013c) De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics 14:125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Tang S, Zhu S et al (2014) Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud). Plant Mol Biol 86:85–92

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhu S, Tang Q et al (2015a) Identification of a CONSTANS homologous gene with distinct diurnal expression patterns in varied photoperiods in ramie (Boehmeria nivea L. Gaud). Gene 560(1):63–70

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhu S, Tang Q et al (2015b) Genome-wide transcriptomic profiling of ramie (Boehmeria nivea L. Gaud) in response to cadmium stress. Gene 558:131–137

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zeng L, Zhu S et al (2017) Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud). DNA Res 25:173–181. https://doi.org/10.1093/dnares/dsx047

    Article  CAS  PubMed Central  Google Scholar 

  • Luan MB, Chen JH, Xu Y et al (2010) Method of establishing ramie core collection. Acta Agron Sin 36:2099–2106

    Article  Google Scholar 

  • Luan MB, Zou ZZ, Zhu JJ et al (2014) Development of a core collection for ramie by heuristic search based on SSR markers. Biotechnol Biotechnol Equip 28:798–804

    Article  PubMed  PubMed Central  Google Scholar 

  • Luan MB, Liu CC, Wang XF et al (2017) SSR markers associated with fiber yield traits in ramie (Boehmeria nivea L. Gaudich). Ind Crop Prod 107:439–445

    Article  CAS  Google Scholar 

  • Luo SY, Yan WJ, Zhao LN et al (1991) Selection of a new ramie cultivar 74-69. China’s Fiber Crops 4:5–10

    Google Scholar 

  • Ma X, Yu C, Tang S et al (2009) Genetic transformation of the bast fiber plant ramie (Boehmeria nivea Gaud.) via Agrobacterium tumefaciens. Plant Cell Tissue Org Cult 100:165–174. https://doi.org/10.1007/s11240-009-9633-8

    Article  Google Scholar 

  • Ma X, Wei G, Grifa C et al (2017) Multi-analytical studies of archaeological Chinese earthen plasters: the inner wall of the Longhu Hall (Yuzhen Palace, Ancient Building Complex, Wudang Mountains, China). Archaeometry 60:1–18. https://doi.org/10.1111/arcm.12318

    Article  CAS  Google Scholar 

  • Maiti RK (1979) A study of the microscopic structure of the fiber strands of common Indian bast fibers and its economic implications. Econ Bot 33:78–87

    Article  Google Scholar 

  • Maiti RK, Rodriguez HG, Satya P (2010) Horizon of world plant fibers: an insight. Pushpa Publishing House, Kolkata

    Google Scholar 

  • Ministry of Agriculture, People’s Republic of China (2008) State of plant genetic resources for food and agriculture in china (1996–2007). Country report on the state of plant genetic resources for food and agriculture

    Google Scholar 

  • Mitra S, Saha S, Guha B et al (2013) Ramie: the strongest bast fiber of nature, Technical bulletin no. 8. Central Research Institute for Jute and Allied Fibers, Indian Council of Agricultural Research (ICAR), Barrackpore, Kolkata, India

    Google Scholar 

  • Pandey SN (2007a) Ramie fiber: part I. Chemical composition and chemical properties. A critical review of recent developments. Text Prog 39:1–66. https://doi.org/10.1080/00405160701580055

    Article  Google Scholar 

  • Pandey SN (2007b) Ramie fiber: part II. Physical fiber properties. A critical appreciation of recent developments. Text Prog 39:189–268. https://doi.org/10.1080/00405160701706049

    Article  Google Scholar 

  • Pandey SN, Krishnan SRA (1990) Fifty years of research (1939–1989). Jute Technological Research Laboratory, Indian Council of Agricultural Research, Calcutta, pp 54–55

    Google Scholar 

  • Peng DX (1993) Selection methods for purification of ramie breeding lines. J Huazhong Agric Univ 12:106–111

    Google Scholar 

  • Pierozzi NI, Baroni RM (2014) Karyotype analysis using C- and NOR-banding in Ramie [Boehmeria nivea (L.) Gaud.]. Cytologia 79:261–268

    Article  Google Scholar 

  • Pierozzi NI, Benatti R (1998) Cytological analysis in the microsporogenesis of ramie Boehmeria nivea Gaud. (Urticaceae) and the effect of colchicine on the chiasma frequency. Cytologia 63:213–221

    Article  CAS  Google Scholar 

  • Pierozzi NI, Baroni RM, Benatti R (2008) Cytological investigations of the microsporogenesis in male-sterile ramie (Boehmeria nivea Gaud.) and its offspring. Cytologia 73:21–31

    Article  Google Scholar 

  • Rivas Pava MDP, Muñoz Lara DG, Ruiz Camayo MA et al (2017) Colección Mastozoológica del Museo de Historia Natural de la Universidad del Cauca. Universidad del Cauca. Occurrence Dataset. https://doi.org/10.15468/dl.crirgn. Accessed via GBIF.org on 27 Feb 2018

  • Sarkar D, Sinha MK, Kundu A et al (2010) Why is ramie the strongest but stiffest of bast fibers? Curr Sci 98:1571–1572

    Google Scholar 

  • Sarma BK (2008) Ramie: the steel wire fiber–a review of research on ramie (Boehmeria nivea) in India and elsewhere. DB Publication, Guwahati

    Google Scholar 

  • Satya P, Chakraborty M (2015) Development and utilization of DNA markers for genetic improvement of bast fiber crops. In: Tashki K (ed) Applications of molecular markers in plant genome analysis and breeding. Research Signpost, Trivandrum, pp 119–142

    Google Scholar 

  • Satya P, Karan M, Jana S et al (2015) Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta Gene 3:62–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma AK, Gawande SP, Karmakar PG et al (2014) Genetic resource management of ramie (Boehmeria sp.): a bast fiber crop of north eastern India. Vegetos 27:279–286

    Google Scholar 

  • Sharma AK, Gawande SP, De RK et al (2017) Ramie variety R 1411 (Hazarika). Indian J Genet Plant Breed 77:439–440

    Google Scholar 

  • UN Comtrade (2018). https://comtrade.un.org. Accessed 15 Jan 2018

  • UNESCO (2011) Weaving of mosi (fine ramie) in the Hansan region. http://www.unesco.org/culture/ich/en/RL/00453. Accessed 15 Jan 2018

  • Wang WC (1995) Boehmeria. In: Wang WT, Chen CJ (eds) Flora Reipublicae Popularis Sinicae. Science Press, Beijing, pp 187–312. (in Chinese)

    Google Scholar 

  • Wang B, Peng D, Sun Z et al (2008) In vitro plant regeneration from seedling-derived explants of ramie [Boehmeria nivea (L.) Gaud]. In Vitro Cell Dev Biol Plant 44:105–111

    Article  CAS  Google Scholar 

  • Wen L, Yu CM, Wang YZ et al (2011) Application of molecular marker SRAP on analysis of genetic diversity of polyembryonic ramie seedlings. J Hunan Agric Univ Nat Sci 37:243–247

    CAS  Google Scholar 

  • Wilmot-Dear CM, Friis I (2013) The Old World species of Boehmeria (Urticaceae, tribus Boehmerieae). A taxonomic revision. Blumea 58:85–216

    Article  Google Scholar 

  • Xiong H, Yu C, Wang Y et al (2005) Study on selection and breeding of new feed ramie variety Zhongsizhu no.1. Plant Fibers Prod 27:1–4

    CAS  Google Scholar 

  • Xu Y, Chen JH, Luan MB (2011a) Research progress on conservation techniques for ramie germplasm resources. J Plant Genet Resour 12:184–189

    Google Scholar 

  • Xu QM, Liu YL, Li XR et al (2011b) Three new fatty acids from the roots of Boehmeria nivea (L.) Gaudich and their antifungal activities. Nat Prod Res 25:640–647

    Article  CAS  PubMed  Google Scholar 

  • Yan CG (2000) Observation on ultrastructure of phloem fiber of ramie. J Hunan Agric Univ 26:31–33

    CAS  Google Scholar 

  • Yang Y, Zhu G (1997) A study on “two-line” cross combinations of ramie (Boehmeria nivea). J Southwest Agric Univ 19:148–151

    Google Scholar 

  • Yao YF, Zeng RQ, Lian DM et al (2017) Selective breeding of new forage ramie variety Minsizhu no. 1. Fujian J Agric Sci 32:119–123

    Google Scholar 

  • Zeng L, Shen A, Chen J et al (2016) Transcriptome analysis of ramie (Boehmeria nivea L. Gaud.) in response to ramie moth (Cocytodes coerulea Guenée) infestation. Biomed Res Int 2016:3702789. https://doi.org/10.1155/2016/3702789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JC, Zheng CQ, Chen RX et al (1992) Evaluation of resistance to leaf mosaic disease in ramie germplasms. China’s Fiber Crops 3:28–29

    Google Scholar 

  • Zhang ZH, Wei G, Yang Y, Shu ZX (2005) Breeding and utilization of ramie male sterility line ‘C26’. Plant Fibers Prod 27:109–112

    Google Scholar 

  • Zheng CQ, Zhang B, Lin HR (1996) Characterization and evaluation of water-submersion resistance in ramie germplasms. China’s Fiber Crops 1:7–12

    Google Scholar 

  • Zhou RY (1993) Preliminary characterization of photoperiod insensitive gynoecious ramie (Boehmeria nivea L.). China’s Fiber Crops 2:1–6

    Google Scholar 

  • Zhou JL, Jie YC, Jiang YB (2004) Genetic relation analysis on ramie cultivars with microsatellite markers. Acta Agron Sin 30:289–292

    CAS  Google Scholar 

  • Zhou JL, Jie YC, Jiang YB et al (2005) Development of simple sequence repeats (SSR) markers of ramie and comparison of SSR and inter-SSR marker systems. Progr Nat Sci 15:136–142

    Google Scholar 

  • Zhou C, Xue Y, Ma Y (2017) Cloning, evaluation, and high-level expression of a thermo-alkaline pectate lyase from alkaliphilic Bacillus clausii with potential in ramie degumming. Appl Microbiol Biotechnol 101(9):3663–3676. https://doi.org/10.1007/s00253-017-8110-2

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Wei XM, Xu JJ et al (1993) Selection of a new ramie cultivar Chuanzhu 4. China’s Fiber Crops 2:19–21

    Google Scholar 

  • Zhu S, Tang S, Tang Q et al (2014) Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection. Gene 552:67–74

    Google Scholar 

  • Zou ZZ, Chen JH, Luan MB et al (2012) Evaluation of genetic relationship in ramie based on RSAP, SRAP, and SSR. Acta Agron Sin 38:840–847

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Major Research Institutes and Online Information Resources Relevant to Ramie

  1. (A)

    Major research institutes

Institution

Specialization and research activities

Contact information and website

Institute of Bast Fiber Crops (IBFC), Changsha, Hunan, People’s Republic of China

Research on bast fiber crops

http://www.caas.cn/en/administration/research_institutes/research_institutes_out_beijing/hunan_changsha/77937.shtml

Indian Council of Agricultural Research-Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata, India

Research on improvement of jute and allied fiber crops, monitoring, coordination, dissemination of technologies and capacity building.

http://www.crijaf.org.in/

Indian Council of Agricultural Research-National Institute of Natural Fibre Engineering and Technology, Kolkata, India

Research on processing natural fibers and their agro-residues, development of value added products and quality assessment, skill development and business incubation service on natural fiber technologies.

http://www.nirjaft.res.in/

Huazhong Agricultural University, Wuhan 430,070, People’s Republic of China

Multi-disciplinary education and research

http://www.hzau.edu.cn/en/HOME.htm

Hunan University, Changsha 410,082, People’s Republic of China

Multi-disciplinary education and research

http://www-en.hnu.edu.cn/

University of Pisa, via S. Michele degliScalzi 2, 56,124 Pisa, Italy

Multi-disciplinary education and research

https://www.unipi.it/

InstitutoAgronômico Campinas (IAC), CPDP RecursosGenéticosVegetais. Av.Barão de Itapura 1481. Caixa Postal 28. Campinas, SP, Brasil.

Multi-disciplinary education and research

www.iac.sp.gov.br

Universidade de Brasilia, 70,919 Brasilia-DF, Brazil

Multi-disciplinary education and research

https://www.unb.br/

  1. (B)

    Online resources

Resource Name

Web address

SRX2843758: Sequence, assembly, and characterization of ramie.

https://www.ncbi.nlm.nih.gov/sra/SRX2843758[accn]

SRX2830696: Sequencing reads for SNP discovery.

https://www.ncbi.nlm.nih.gov/sra/SRX2830696[accn]

SRX1334525: Transcriptomic basis to nitrogen deficiency- T13-C

https://www.ncbi.nlm.nih.gov/sra/SRX1334525[accn]

SRX843088: GSM1585374: CH; Boehmeria nivea ; RNA-Seq

https://www.ncbi.nlm.nih.gov/sra/SRX843088[accn]

SRX591248: Transcriptome of ramie xylem

https://www.ncbi.nlm.nih.gov/sra/SRX591248[accn]

SRX591247: Transcriptome of ramie phloem

https://www.ncbi.nlm.nih.gov/sra/SRX591247[accn]

SRX523226: Root under the severe drought stress

https://www.ncbi.nlm.nih.gov/sra/SRX523226[accn]

SRX523181: Leaf under moderate drought stress

https://www.ncbi.nlm.nih.gov/sra/SRX523181[accn]

SRX522560: Transcriptomic comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud)

https://www.ncbi.nlm.nih.gov/sra/SRX522560[accn]

SRX516609: Transcriptome of mixed sample from petiole at different culture stage

https://www.ncbi.nlm.nih.gov/sra/SRX516609[accn]

SRX507188: Ramie fiber transcriptome-bottom of bark

https://www.ncbi.nlm.nih.gov/sra/SRX507188[accn]

SRX507187: Ramie fiber transcriptome-middle of bark

https://www.ncbi.nlm.nih.gov/sra/SRX507187[accn]

SRX507186: Ramie fiber transcriptome-top of bark

https://www.ncbi.nlm.nih.gov/sra/SRX507186[accn]

SRX473608: Transcriptome of ramie hairy roots

https://www.ncbi.nlm.nih.gov/sra/SRX473608[accn]

SRX180727: De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie ( Boehmeria nivea L. Gand)

https://www.ncbi.nlm.nih.gov/sra/SRX180727[accn]

1.2 Appendix II: Genetic Resources of Ramie

Cultivar

Important traits

Cultivation location

Huazhou 1

High fiber productivity

China

Huazhou 3

High fiber productivity

China

Huazhou 4

High fiber productivity

China

Huazhou 5

High fiber productivity

China

Chuanzhu 4

High fiber productivity

China

Zhongzhu-1

High fiber productivity, resistance to insect-pests, nematodes and diseases

China

Zhongzhu-2

High fiber productivity

China

Zhongzhu-3

High fiber productivity, early maturity

China

Zhongsizhu no.1

High protein, fiber and vitamin

China

Minsizhu no. 1

High forage yield

China

R 67–34

High fiber productivity

India

R 1411

High fiber productivity, low gum content, resistance to Indian red admiral caterpillar and leaf folder

India

Florida selection

High fiber productivity

USA

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satya, P., Mitra, S., Ray, D.P. (2019). Ramie (Boehmeria nivea L. Gaud) Genetic Improvement. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Industrial and Food Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23265-8_5

Download citation

Publish with us

Policies and ethics