Skip to main content

HSP90 and Its Inhibitors for Cancer Therapy: Use of Nano-delivery System to Improve Its Clinical Application

  • Chapter
  • First Online:
Heat Shock Protein 90 in Human Diseases and Disorders

Part of the book series: Heat Shock Proteins ((HESP,volume 19))

Abstract

The molecular chaperone HSP90 (heat shock protein 90) has become a crucial target in cancer therapeutics as its function has beenĀ implicated with various types of malignant transformation. Numerous HSP90 inhibitors have been identified so far and many of them have also been clinically tested. Although most of these are natural or their derived inhibitors including geldanamycin and its derivatives 17-AAG and 17-DMAGĀ have shown efficacy, their easy success has been hindered in various stages of the clinical studies due to poor solubility and cytotoxicity. However, recently substantial published documents reported that the systemic targeting of the HSP90 inhibitors using nano-based drug delivery system could provide a possible clinical solution to overcome their limitation. In this chapter, we review the initial development of various HSP90 inhibitors from natural to synthetically derived one and their clinical studies. We also review their limitations and future perspectives as a possible potential agent in the cancer therapeutics by their systemic and control delivery to the target site using the nano-drug delivery system. Also, the application of combined therapy has also been discussed in the current chapter using HSP90 inhibitors and nanocarrier. In addition, we also discuss the therapeutic approaches like photothermal where nano carrier is not only used as a carrier for the systemic delivery of HSP90 inhibitors but also as a therapeutic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-allylamino-17demethoxygeldanamycin

17-DMAG:

17-(2-dimethylaminoethyl)amino-17-demethoxygeldanamycin

ADP:

adenosine diphosphate

AhR:

aryl hydrocarbon receptor

ATP:

adenosine triphosphate

CBR:

clinical benefit rate

DLT:

dose-limiting toxicities

EGCG:

Epigallocatechin 3-gallate

FDG-PET:

fluorodeoxyglucose positron emission tomography

GIST:

gastrointestinal stromal tumors

GM:

Geldanamycin

HOP:

HSP90 organizing protein

HSP:

heat shock protein

IPI-493:

17-desmethoxy-17-amino Geldanamycin

IPI-504:

17-allylamino-17-demethoxygeldanamycin Hydroquinone Hydro-chloride

MDR:

multi-drug resistance

MTD:

maximum tolerated dose

NSCLC:

non-small-cell lung carcinoma

ORR:

overall response rate

PBMC:

peripheral blood mononuclear cells

PCL:

poly(Īµ-caprolactone)

PDGFRA:

platelet-derived growth factor receptor alpha

PEG:

poly(ethylene glycol)

PET:

positron emission tomography

PLGA:

poly (lactic-co-glycolic acid)

PR:

partial response

RD:

radicicol

SD:

stable diseases

SUV:

standardized uptake value

TNBC:

triple-negative breast cancer

References

  • Allan RK, Mok D, Ward BK, Ratajczak T (2006) Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90 evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem 281:7161ā€“7171

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Audisio D, Messaoudi S, Cegielkowski L et al (2011) Discovery and biological activity of 6BrCaQ as an inhibitor of the Hsp90 protein folding machinery. ChemMedChem 6:804ā€“815

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bagatell R, Whitesell L (2004) Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3:1021ā€“1030

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bao R, Lai C-J, Wang D-G et al (2009) Targeting heat shock protein 90 with CUDC-305 overcomes erlotinib resistance in nonā€“small cell lung cancer. Mol Cancer TherĀ 8(12): 3296ā€“3306

    Google ScholarĀ 

  • Baylon HG, Caguioa PB, Davies FE et al (2013) A phase 1/2 study of KW-2478, an Hsp 90 inhibitor, in combination with bortezomib (BTZ) in patients (Pts) with relapsed/refractory (R/R) multiple myeloma (MM). Am Soc Hematol 122: 1967

    Google ScholarĀ 

  • Bruni N, Stella B, Giraudo L, Della Pepa C, Gastaldi D, Dosio F (2017) Nanostructured delivery systems with improved leishmanicidal activity: a critical review. Int J Nanomedicine 12:5289

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Butler LM, Ferraldeschi R, Armstrong HK, Centenera MM, Workman P (2015) Maximizing the therapeutic potential of HSP90 inhibitors. Mol Cancer Res 13:1445ā€“1451: molcanres. 0234.2015

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Byrd KM, Subramanian C, Sanchez J etĀ al (2016) Synthesis and biological evaluation of novobiocin core analogues as Hsp90 inhibitors. Chem Eur J 22:6921ā€“6931

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cavenagh J, Yong K, Byrne J etĀ al (2008) The safety, pharmacokinetics and pharmacodynamics of KW-2478, a novel HSP90 antagonist, in patients with B-cell malignancies: a first-in-man, phase I, multicentre, open-label, dose escalation study. Am Soc Hematol 112(11): 2777

    Google ScholarĀ 

  • ChĆØne P (2002) ATPases as drug targets: learning from their structure. Nat Rev Drug Discov 1:665

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cheung K-MJ, Matthews TP, James K et al (2005) The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3, 4-diarylpyrazole class of Hsp90 inhibitors. Bioorg Med Chem Lett 15:3338ā€“3343

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Chiosis G, Timaul MN, Lucas B et al (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8:289ā€“299

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cho D, Heath E, Cleary J etĀ al (2011) A phase I dose-escalation study of the Hsp90 inhibitor ganetespib (STA-9090) administered twice weekly in patients with solid tumors: updated report. J Clin Oncol 29:3051ā€“3051

    ArticleĀ  Google ScholarĀ 

  • Demetri G, Heinrich M, Chmielowski B et al (2011) An open-label phase II study of the Hsp90 inhibitor ganetespib (STA-9090) in patients (pts) with metastatic and/or unresectable GIST. J Clin Oncol 29:10011ā€“10011

    ArticleĀ  Google ScholarĀ 

  • Do KT, Speranza G, Chen AP et al. (2012) Phase l study assessing a two-consecutive-day (QDƗ 2) dosing schedule of the HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Paper presented at the Proc Am Soc Clin Oncol

    Google ScholarĀ 

  • Gaspar N, Sharp SY, Eccles SA et al (2010) Mechanistic evaluation of the novel HSP90 inhibitor NVP-AUY922 in adult and pediatric glioblastoma. Mol Cancer Ther 9:1219ā€“1233

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ge J, Normant E, Porter JR et al (2006) Design, synthesis, and biological evaluation of hydroquinone derivatives of 17-amino-17-demethoxygeldanamycin as potent, water-soluble inhibitors of Hsp90. J Med Chem 49:4606ā€“4615

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Goldman J, Raju R, Gordon G, Vukovic V, Bradley R, Rosen L (2010) A phase I dose-escalation study of the Hsp90 inhibitor STA-9090 administered once weekly in patients with solid tumors. J Clin Oncol 28:2529ā€“2529

    ArticleĀ  Google ScholarĀ 

  • Hadden MK, Galam L, Gestwicki JE, Matts RL, Blagg BS (2007) Derrubone, an inhibitor of the Hsp90 protein folding machinery. J Nat Prod 70:2014ā€“2018

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Haque A, Alam Q, Zubair Alam M et al (2016) Current understanding of HSP90 as a novel therapeutic target: an emerging approach for the treatment of cancer. Curr Pharm Des 22:2947ā€“2959

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • He H, Zatorska D, Kim J etĀ al (2006) Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J Med Chem 49:381ā€“390

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hollingshead M, Alley M, Burger AM et al (2005) In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol 56:115ā€“125

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hƶlzel M, Bovier A, TĆ¼ting T (2013) Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 13:365

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Isambert N, Hollebecque A, Berge Y et al (2012) A phase I study of Debio 0932, an oral HSP90 inhibitor, in patients with solid tumors. Am Soc Clin OncolĀ 8(12): 3296ā€“3306

    Google ScholarĀ 

  • Jensen MR, Schoepfer J, Radimerski T et al (2008) NVP-AUY922: a small molecule HSP90 inhibitor with potent antitumor activity in preclinical breast cancer models. Breast Cancer Res 10:R33

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jhaveri K, Taldone T, Modi S, Chiosis G (2012) Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochim Biophys Acta (BBA)-Mol Cell Res 1823:742ā€“755

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jhaveri K, Ochiana SO, Dunphy MP et al (2014) Heat shock protein 90 inhibitors in the treatment of cancer: current status and future directions. Expert Opin Investig Drugs 23:611ā€“628

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kasibhatla SR, Hong K, Biamonte MA et al (2007) Rationally designed high-affinity 2-amino-6-halopurine heat shock protein 90 inhibitors that exhibit potent antitumor activity. J Med Chem 50:2767ā€“2778

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lamotte S, SpƤth GF, Rachidi N, Prina E (2017) The enemy within: targeting hostā€“parasite interaction for antileishmanial drug discovery. PLoS Negl Trop Dis 11:e0005480

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lancet JE, Smith BD, Bradley R, Komrokji RS, Teofilovici F, Rizzieri DA (2010) A phase I/II trial of the potent Hsp90 inhibitor STA-9090 administered once weekly in patients with advanced hematologic malignancies. Am Soc Hematol 116(21):3294

    Google ScholarĀ 

  • Li Y, Zhang T, Schwartz SJ, Sun D (2009) New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat 12:17ā€“27

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lin T-y, Guo W, Long Q et al (2016) HSP90 inhibitor encapsulated photo-theranostic nanoparticles for synergistic combination cancer therapy. Theranostics 6:1324

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mahadevan D, Rensvold DM, Kurtin SE et al (2012) First-in-human phase I study: results of a second-generation non-ansamycin heat shock protein 90 (HSP90) inhibitor AT13387 in refractory solid tumors. Am Soc Clin OncolĀ 3028

    Google ScholarĀ 

  • Mahalingam D, Swords R, Carew JS, Nawrocki S, Bhalla K, Giles F (2009) Targeting HSP90 for cancer therapy. Br J Cancer 100:1523

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181ā€“37186

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY (2013) Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev 65:1866ā€“1879

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Martin CJ, Gaisser S, Challis IR et al (2008) Molecular characterization of macbecin as an Hsp90 inhibitor. J Med Chem 51:2853ā€“2857

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Marubayashi S, Koppikar P, Taldone T et al (2010) HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans. J Clin Invest 120:3578ā€“3593

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Menzella HG, Tran T-T, Carney JR et al (2009) Potent non-benzoquinone ansamycin heat shock protein 90 inhibitors from genetic engineering of Streptomyces hygroscopicus. J Med Chem 52:1518ā€“1521

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Messaoudi S, Peyrat J, Brion J, Alami M (2008) Recent advances in Hsp90 inhibitors as antitumor agents. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem-Anti-Cancer Agents) 8:761ā€“782

    CASĀ  Google ScholarĀ 

  • Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271:22796ā€“22801

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mitchell P (2011) Biogen Idec restructures, sharpens neurology focus. Nature Biotechnology 29: 7ā€“8

    Google ScholarĀ 

  • Murray CW, Carr MG, Callaghan O et al (2010) Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J Med Chem 53:5942ā€“5955

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nakashima T, Ishii T, Tagaya H et al (2010) New molecular and biological mechanism of anti-tumor activities of KW-2478, a novel non-ansamycin Hsp90 inhibitor, in multiple myeloma cells. Clin Cancer Res 16:2792ā€“2802: clincanres. 3112. subyr

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55ā€“S61

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Neckers L (2007) Heat shock protein 90: the cancer chaperone. In: Heat shock protein cancer. Springer, Dordrecht, pp 231ā€“52

    Google ScholarĀ 

  • Nimmanapalli R, Oā€™Bryan E, Bhalla K (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 61:1799ā€“1804

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Ohsuki S, Tengeiji A, Ikeda M, Shibata Y, Nagata C, Shimada T (2012) Pyrazolopyrimidine derivative: Google Patents

    Google ScholarĀ 

  • Palermo CM, Westlake CA, Gasiewicz TA (2005) Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. Biochemistry 44:5041ā€“5052

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Parveen S, Sahoo SK (2008) Polymeric nanoparticles for cancer therapy. J Drug Target 16:108ā€“123

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Patel HJ, Modi S, Chiosis G, Taldone T (2011) Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment. Expert Opin Drug Discovery 6:559ā€“587

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271ā€“294

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Petersen ALOA, Campos TA, Dantas DAS et al (2018) An in vitro assessment on the efficacy of a novel liposomal formulation containing the Hsp-90 inhibitor, 17-AAG. Front Cell Infect Microbiol 8:303

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Proia DA, Zhang C, Sequeira M et al (2013) Preclinical activity profile and therapeutic efficacy of the HSP90 inhibitor ganetespib in triple-negative breast cancer. Clin Cancer Res: clincan resĀ 20(2):413ā€“424

    Google ScholarĀ 

  • Rochani AK, Balasubramanian S, Girija AR et al (2016) Dual mode of cancer cell destruction for pancreatic cancer therapy using Hsp90 inhibitor loaded polymeric nano magnetic formulation. Int J Pharm 511:648ā€“658

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260ā€“266

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Rowlands MG, Newbatt YM, Prodromou C, Pearl LH, Workman P, Aherne W (2004) High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal Biochem 327:176ā€“183

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Samlowski W, Papadopoulos K, Olszanski A et al (2011) Phase 1 study of HSP90 inhibitor MPC-3100 in subjects with refractory or recurrent cancer. Mol Targets Cancer Ther 10(11): A96-A96

    Google ScholarĀ 

  • Samuel T, Sessa C, Britten C et al (2010) AUY922, a novel HSP90 inhibitor: final results of a first-in-human study in patients with advanced solid malignancies. J Clin Oncol 28:2528ā€“2528

    ArticleĀ  Google ScholarĀ 

  • Sauvage F, FranzĆØ S, Bruneau A et al (2016) Formulation and in vitro efficacy of liposomes containing the Hsp90 inhibitor 6BrCaQ in prostate cancer cells. Int J Pharm 499:101ā€“109

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Schroder C, Pedersen J, Chua S et al (2011) Use of biomarkers and imaging to evaluate the treatment effect of AUY922, an HSP90 inhibitor, in patients with HER2+ or ER+ metastatic breast cancer. J Clin Oncol 29:e11024ā€“e11e24

    ArticleĀ  Google ScholarĀ 

  • Shi J, Van de Water R, Hong K et al (2012) EC144 is a potent inhibitor of the heat shock protein 90. J Med Chem 55:7786ā€“7795

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9:1ā€“20

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7ā€“30

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Soga S, Akinaga S, Shiotsu Y (2013) Hsp90 inhibitors as anti-cancer agents, from basic discoveries to clinical development. Curr Pharm Des 19:366ā€“376

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Solit DB, Chiosis G (2008) Development and application of Hsp90 inhibitors. Drug Discov Today 13:38ā€“43

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Sydor JR, Normant E, Pien CS et al (2006) Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci 103:17408ā€“17413

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Taldone T, Chiosis G (2009) Purine-scaffold Hsp90 inhibitors. Curr Top Med Chem 9:1436ā€“1446

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Taldone T, Patel PD, Patel M et al (2013) Experimental and structural testing module to analyze paralogue-specificity and affinity in the Hsp90 inhibitors series. J Med Chem 56:6803ā€“6818

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Tanida S, Hasegawa T, Higashide E (1980) Macbecins I and II, new antitumor antibiotics. J Antibiot 33:199ā€“204

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Wang J, Li Z, Lin Z et al (2015) 17-DMCHAG, a new geldanamycin derivative, inhibits prostate cancer cells through Hsp90 inhibition and survivin downregulation. Cancer Lett 362:83ā€“96

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Won Y-W, Yoon S-M, Sonn CH, Lee K-M, Kim Y-H (2011) Nano self-assembly of recombinant human gelatin conjugated with Ī±-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano 5:3839ā€“3848

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Woodhead AJ, Angove H, Carr MG et al (2010) Discovery of (2, 4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1, 3-dihydroisoindol-2-yl] methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J Med Chem 53:5956ā€“5969

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xiong MP, YƔƱez JA, Remsberg CM et al (2008) Formulation of a geldanamycin prodrug in mPEG-b-PCL micelles greatly enhances tolerability and pharmacokinetics in rats. J Control Release 129:33ā€“40

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ying W, Du Z, Sun L et al (2011) Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy. Mol Cancer Ther 11(2):475-484

    Google ScholarĀ 

  • Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang H, Neely L, Lundgren K et al (2010) BIIB021, a synthetic Hsp90 inhibitor, has broad application against tumors with acquired multidrug resistance. Int J Cancer 126:1226ā€“1234

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang X, Zhang T, Ye Y et al (2015) Phospholipid-stabilized mesoporous carbon nanospheres as versatile carriers for systemic delivery of amphiphobic SNX-2112 (a Hsp90 inhibitor) with enhanced antitumor effect. Eur J Pharm Biopharm 94:30ā€“41

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors sincerely thank the Science and Engineering Research Board, Government of India, for financial support (Grant No. SERB/F/4290/2016-17) and National Institute of Technology Rourkela, Government of India, for providing the infrastructural facility for the preparation of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhankar Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Somu, P., Paul, S. (2019). HSP90 and Its Inhibitors for Cancer Therapy: Use of Nano-delivery System to Improve Its Clinical Application. In: Asea, A., Kaur, P. (eds) Heat Shock Protein 90 in Human Diseases and Disorders. Heat Shock Proteins, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-23158-3_8

Download citation

Publish with us

Policies and ethics