Skip to main content

Durum Wheat (Triticum turgidum ssp. durum) Breeding to Meet the Challenge of Climate Change

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Cereals

Abstract

Durum wheat (Triticum turgidum ssp. durum) is a tetraploid wheat species (2n = 28) planted annually on an estimated area of 18 million ha, representing approximately 8–10% of all the wheat cultivated area in the world, and an annual production ranging from 35–40 million mt. Regions of the Mediterranean Basin and North America (i.e. Canada) produce about 60% of world durum wheat production, mainly used for human consumption as pasta, bulgur, couscous and some breads. In general durum wheat is better adapted to high temperatures and to semiarid climates than bread wheat. In spite of its relatively high adaptability to the marginal and drought environments, the production of durum wheat is threatened by the impacts of climate change, and the need for more sustainable development. This chapter provides an update on progress in genetic improvement of durum wheat and on the tools and strategies to maintain productivity and strengthen food security despite increasing water scarcity, higher temperatures, and the emergence of new pests and diseases. These demand changes in the approaches to crop improvement and require implementing novel approaches in gene discovery and plant breeding. Conventional and modern breeding strategies are discussed to integrate new target traits into varieties. Modelling provides a rational approach to identify desirable traits or combination of traits potentially leading to the specification of wheat ideotypes optimized for target environmental and future climatic conditions. The integration of genomics and phenomics is promising to revolutionize plant breeding providing an exceptional opportunity to identify genetic variation that can be employed in durum wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah S, Sehgal SK, Jin Y et al (2017) Insights into tan spot and stem rust resistance and susceptibility by studying the pre-green revolution global collection of wheat. Plant Pathol J 33(2):125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acuña-Galindo MA, Mason RE, Subramanian NK, Hays DB (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492

    Article  Google Scholar 

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Phys 154(2):526–530

    Article  CAS  Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119(3):507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alahmad S, Dinglasan E, Leung KM et al (2018) Speed breeding for multiple quantitative traits in durum wheat. Plant Meth 14:36

    Article  Google Scholar 

  • Alisaac E, Behmann J, Kuska MT et al (2018) Hyperspectral quantification of wheat resistance to Fusarium head blight: comparison of two Fusarium species. Eur J Plant Pathol 152:1–16

    Article  Google Scholar 

  • Altenbach SB, DuPont FM, Kothari KM et al (2003) Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J Cereal Sci 37(1):9–20

    Article  Google Scholar 

  • Aoun M, Breiland M, Kathryn Turner M et al (2016) Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection. Plant Genome 9(3):1–24

    Article  CAS  Google Scholar 

  • Appels R, Eversole K, Feuillet C et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191

    Article  CAS  Google Scholar 

  • Araus JL (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. CRC Crit Rev Plant Sci 27(6):377–412

    Article  Google Scholar 

  • Araus JL, Cairns JE, Crossa J et al (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19:52–61

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Kefauver SC, Zaman-Allah M et al (2018) Translating high-throughput phenotyping into genetic gain field phenotyping is a bottleneck for crop genetic improvement. Trends Plant Sci 23(5):451–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arruda MP, Lipka AE, Brown PJ et al (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breed 36(7):84

    Article  CAS  Google Scholar 

  • Avni R, Nave M, Barad O et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346):93–97

    Article  CAS  PubMed  Google Scholar 

  • Bai G, Ge Y, Hussain W et al (2016) A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comput Electron Agric 128:181–192

    Article  Google Scholar 

  • Baloch FS, Alsaleh A, Shahid MQ et al (2017) A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One 12(1):e0167821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassi FM, Bentley AR, Charmet G et al (2015) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36

    Article  PubMed  CAS  Google Scholar 

  • Basso B, Fiorentino C, Cammarano D et al (2012) Analysis of rainfall distribution on spatial and temporal patterns of wheat yield in Mediterranean environment. Eur J Agron 41:52–65

    Article  Google Scholar 

  • Battenfield SD, Guzmán C, Gaynor RC et al (2016) Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 9(2):1–12

    Article  CAS  Google Scholar 

  • Beales J, Turner A, Griffiths S et al (2007) A Pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115(5):721–733

    Article  CAS  PubMed  Google Scholar 

  • Beleggia R, Fragasso M, Miglietta F et al (2018) Mineral composition of durum wheat grain and pasta under increasing atmospheric CO2 concentrations. Food Chem 242:53–61

    Article  CAS  PubMed  Google Scholar 

  • Bentley AR, Turner AS, Gosman N et al (2011) Frequency of photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breed 130:10–15

    Article  CAS  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bernardo AN, Ma H, Zhang D, Bai G (2012) Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance. Mol Breed 29:477–488

    Article  Google Scholar 

  • Berraies S, Salah Gharbi M, Rezgui S, Yahyaoui A (2014) Estimating grain yield losses caused by septoria leaf blotch on durum wheat in Tunisia. Chil J Agric Res 74(4):432–437

    Article  Google Scholar 

  • Bhattacharya S (2017) Deadly new wheat disease threatens Europe’s crops. Nature 542(7640):145–146

    Article  CAS  PubMed  Google Scholar 

  • Blum A (2011) Plant water relations, plant stress and plant production. In: Plant breeding for water-limited environments. Springer, New York, pp 11–52

    Chapter  Google Scholar 

  • Bogard M, Allard V, Martre P et al (2013) Identifying wheat genomic regions for improving grain protein concentration independently of grain yield using multiple inter-related populations. Mol Breed 31:587–599

    Article  CAS  Google Scholar 

  • Bokore FE, Knox R, Cuthbert RD et al (2016) Effects of media supplements on doubled haploid production in durum wheat. Can J Plant Sci 97(1):65–71

    Google Scholar 

  • Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9(5):563–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Borlaug N (2007) Feeding a hungry world. Science 318(5849):359

    Article  CAS  PubMed  Google Scholar 

  • Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Phys 170(4):2172–2186

    Article  CAS  Google Scholar 

  • Bozzini A, Fabriani G, Lintas C (1988) Origin, distribution, and production of durum wheat in the world. In: Fabriani G, Lintas C (eds) Durum: chemistry and technology. AACC. AACC International, St. Paul, pp 1–16

    Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52(2):707–719

    Article  Google Scholar 

  • Canè MA, Maccaferri M, Nazemi G et al (2014) Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breed 34:1629–1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardi T, D’Agostino N, Tripodi P (2017) Genetic transformation and genomic resources for next-generation precise genome engineering in vegetable crops. Front Plant Sci 8:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavanagh CR, Chao S, Wang S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Nat Acad Sci 110(20):8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceccarelli S (1994) Specific adaptation and breeding for marginal conditions. Euphytica 77(3):205–221

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Impiglia A (1998) Choice of selection strategy in breeding barley for stress environments. Euphytica 103(3):307–318

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Maatougui M et al (2010) Plant breeding and climate changes. J Agric Sci 148:627–637

    Article  Google Scholar 

  • Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108(3):317–326

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Singh D, Pathak J et al (2017) SNP discovery from next-generation transcriptome sequencing data and their validation using KASP assay in wheat (Triticum aestivum L.). Mol Breed 37(7):92

    Article  CAS  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Bot 27(3):314–337

    Google Scholar 

  • Chen Y, Carver BF, Wang S et al (2009) Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor Appl Genet 118(5):881–889

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wellings C, Chen X et al (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici. Mol Plant Pathol 15(5):433–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Chenu K, Porter JR, Martre P et al (2017) Contribution of crop models to adaptation in wheat. Trends Plant Sci 22:472–490

    Article  CAS  PubMed  Google Scholar 

  • Cistué L, Romagosa I, Batlle F, Echávarri B (2009) Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture. Plant Cell Rep 28(5):727–735

    Article  PubMed  CAS  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C et al (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65(1–2):93–106

    Article  CAS  PubMed  Google Scholar 

  • Colasuonno P, Incerti O, Lozito ML et al (2016) DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population. BMC Genet 17(1):43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2002) Improving intrinsic water-use efficiency and crop yield. Crop Sci 42(1):122–131

    Article  PubMed  Google Scholar 

  • Condorelli GE, Maccaferri M, Newcomb M et al (2018) Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front Plant Sci 9:893

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305

    Article  Google Scholar 

  • Cormier F, Le Gouis J, Dubreuil P et al (2014) A genome-wide identification of chromosomal regions determining nitrogen use efficiency components in wheat (Triticum aestivum L.). Theor Appl Genet 127(12):2679–2693

    Article  CAS  PubMed  Google Scholar 

  • Cormier F, Foulkes J, Hirel B et al (2016) Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivum L.). Plant Breed 135(3):255–278

    Article  CAS  Google Scholar 

  • Cotrufo FM, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant. Glob Chang Biol 4(1):43–54

    Article  Google Scholar 

  • Crossa J, De Los Campos G, Maccaferri M et al (2016) Extending the marker × Environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Sci 56:2193–2209

    Article  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975

    Article  CAS  PubMed  Google Scholar 

  • Cubadda R (1989) Current research and future needs in durum wheat chemistry and technology. Cereal Foods World 34:206–209

    Google Scholar 

  • Cui F, Zhang N, Fan XL et al (2017) Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 7(1):3788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • CWC, California Wheat Commission (2017) Desert Durum® crop quality report. Available online at: https://californiawheat.org/. Accessed 17 Sept 2018

  • Daetwyler HD, Bansal UK, Bariana HS et al (2014) Genomic prediction for rust resistance in diverse wheat landraces. Theor Appl Genet 127(8):1795–1803

    Article  CAS  PubMed  Google Scholar 

  • Dajic Z (2006) Salt stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, pp 41–99

    Chapter  Google Scholar 

  • de Dorlodot S, Forster B, Pagès L et al (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12(10):474–481

    Article  PubMed  CAS  Google Scholar 

  • De La Fuente GN, Frei UK, Lübberstedt T (2013) Accelerating plant breeding. Trends Plant Sci 18(12):667–672

    Article  CAS  Google Scholar 

  • De Vita P, Nicosia OLD, Nigro F et al (2007) Breeding progress in morpho-physiological, agronomical and qualitative traits of durum wheat cultivars released in Italy during the 20th century. Eur J Agron 26:39–53

    Article  Google Scholar 

  • De Vita P, Avio L, Sbrana C et al (2018) Genetic markers associated to arbuscular mycorrhizal colonization in durum wheat. Sci Rep 8(1):10612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant-insect interactions. Plant Phys 160(4):1677–1685

    Article  CAS  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19(9):592–601

    Article  CAS  PubMed  Google Scholar 

  • Dettori M, Cesaraccio C, Duce P (2017) Simulation of climate change impacts on production and phenology of durum wheat in Mediterranean environments using CERES-Wheat model. Field Crop Res 206:43–53

    Article  Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12(2):178–184

    Article  CAS  PubMed  Google Scholar 

  • Domínguez-Mendez R, Alcántara-de la Cruz R, Rojano-Delgado AM et al (2017) Multiple mechanisms are involved in new imazamox-resistant varieties of durum and soft wheat. Sci Rep 7:14839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donatelli M, Magarey RD, Bregaglio S et al (2017) Modelling the impacts of pests and diseases on agricultural systems. Agric Syst 155:213–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duveiller E, Singh RP, Nicol JM (2007) The challenges of maintaining wheat productivity: pests, diseases, and potential epidemics. Euphytica 157(3):417–430

    Article  Google Scholar 

  • Dyer AT, Johnston RH, Hogg AC, Johnston JA (2009) Comparison of pathogenicity of the Fusarium crown rot (FCR) complex (F-culmorum, F-pseudograminearum and F-graminearum) on hard red spring and durum wheat. Eur J Plant Pathol 125(3):387–395

    Article  Google Scholar 

  • Edwards S, Barrier-Guillot B, Clasen PE et al (2009) Emerging issues of HT-2 and T-2 toxins in European cereal production. World Mycotoxin J 2(2):173–179

    Article  CAS  Google Scholar 

  • Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105(6):1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Eriksson D, Amman KH (2017) A universally acceptable view on the adoption of improved plant breeding techniques. Front Plant Sci 7:1999

    Article  PubMed  PubMed Central  Google Scholar 

  • Eyal Z (1999) The septoria tritici and stagonospora nodorum blotch diseases of wheat. Eur J Plant Pathol 105(7):629–641

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U et al (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Fangmeier A, Grüters U, Högy P et al (1997) Effects of elevated CO2, nitrogen supply and tropospheric ozone on spring wheat-II. Nutrients (N, P, K, S, Ca, Mg, Fe, Mn, Zn). Environ Pollut 96(1):43–59

    Article  CAS  PubMed  Google Scholar 

  • FAO/IAEA Mutant Variety Database (2018) FAO/IAEA Mutant Variety Database. Available online at: https://mvd.iaea.org/. Accessed 15 Sept 2018

  • Fares C, Menga V, Badeck F et al (2016) Increasing atmospheric CO2 modifies durum wheat grain quality and pasta cooking quality. J Cereal Sci 69:245–251

    Article  CAS  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Phys Plant Mol Biol 40(1):503–537

    Article  CAS  Google Scholar 

  • Feldman M, Millet E (2001) The contribution of the discovery of wild emmer to an understanding of wheat evolution and domestication and to wheat improvement. Isr J Plant Sci 49(1):25–36

    Article  Google Scholar 

  • Ferrara GO, Mosaad MG, Mahalakshmi V, Rajaram S (1998) Photoperiod and vernalisation response of Mediterranean wheats, and implications for adaptation. Euphytica 100(1–3):377–384

    Article  Google Scholar 

  • Feuillet C, Travella S, Stein N et al (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Nat Acad Sci 100(25):15253–15258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedler JD, Salsman E, Liu Y et al (2017) Genome-wide association and prediction of grain and semolina quality traits in durum wheat breeding populations. Plant Genome 10(3):1–12

    Article  CAS  Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Ann Rev Plant Biol 64:267–291

    Article  CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61(12):3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Fones H, Gurr S (2015) The impact of Septoria tritici Blotch disease on wheat: an EU perspective. Fungal Genet Biol 79:3–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaine JX, Ravel C, Pageau K et al (2009) A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor Appl Genet 119:645–662

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42(4):727–734

    Article  CAS  Google Scholar 

  • Fu YB (2015) Understanding crop genetic diversity under modern plant breeding. Theor Appl Genet 128(11):2131–2142

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu D, Uauy C, Distelfeld A et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323(5919):1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadaleta A, Nigro D, Giancaspro A, Blanco A (2011) The glutamine synthetase (GS2) genes in relation to grain protein content of durum wheat. Funct Integr Genom 11(4):665–670

    Article  CAS  Google Scholar 

  • García-Llamas C, Martín A, Ballesteros J (2004) Differences among auxin treatments on haploid production in durum wheat × maize crosses. Plant Cell Rep 23(1–2):46–49

    PubMed  Google Scholar 

  • Garrett KA, Dendy SP, Frank EE et al (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509

    Article  CAS  PubMed  Google Scholar 

  • Garrett KA, Forbes GA, Savary S et al (2011) Complexity in climate-change impacts: An analytical framework for effects mediated by plant disease. Plant Pathol 60(1):15–30

    Article  Google Scholar 

  • Ghavami F, Elias EM, Mamidi S et al (2011) Mixed model association mapping for fusarium head blight resistance in Tunisian-derived durum wheat populations. Genet 1:209–218

    CAS  Google Scholar 

  • Ghosh S, Watson A, Gonzalez-Navarro OE et al (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13(12):2944–2963

    Article  CAS  PubMed  Google Scholar 

  • Giunta F, De Vita P, Mastrangelo AM et al (2018) Environmental and genetic variation for yield-related traits of durum wheat as affected by development. Front Plant Sci 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Glunt KD, Paaijmans KP, Read AF, Thomas MB (2014) Environmental temperatures significantly change the impact of insecticides measured using WHOPES protocols. Malar J 13(1):350

    Article  PubMed  PubMed Central  Google Scholar 

  • Goncharov NP (2011) Genus Triticum L. taxonomy: the present and the future. Plant Syst Evol 295:1–4):1–11

    Article  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5(6):515–525

    Article  CAS  PubMed  Google Scholar 

  • Gouache D, Bogard M, Thepot S et al (2015) From ideotypes to genotypes: approaches to adapt wheat phenology to climate change. Procedia Environ Sci 29:34–35

    Article  CAS  Google Scholar 

  • Greco M, Mirauda D, Squicciarino G, Telesca V (2005) Desertification risk assessment in southern Mediterranean areas. Adv Geosci 2:243–247

    Article  Google Scholar 

  • Guzman C, Peña RJ, Singh R et al (2016) Wheat quality improvement at CIMMYT and the use of genomic selection on it. Appl Transl Genom 11:3–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Habash DZ, Kehel Z, Nachit M (2009) Genomic approaches for designing durum wheat ready for climate change with a focus on drought. J Exp Bot 60(10):2805–2815

    Article  CAS  PubMed  Google Scholar 

  • Haghighattalab A, González Pérez L, Mondal S et al (2016) Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Meth 12(1):35

    Article  CAS  Google Scholar 

  • Haile JK, N’Diaye A, Clarke F et al (2018) Genomic selection for grain yield and quality traits in durum wheat. Mol Breed 38(6):75

    Article  CAS  Google Scholar 

  • Handmer J, Honda Y, Kundzewicz ZW et al (2012) Changes in impacts of climate extremes: human systems and ecosystems. In: Managing the risks of extreme events and disasters to advance climate change adaptation, special report of the Intergovernmental Panel on Climate Change. IPCC pp 23–29

    Google Scholar 

  • Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153(3740):1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Haudry A, Cenci A, Ravel C et al (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  CAS  PubMed  Google Scholar 

  • He Y, Wang H, Qian B et al (2012) How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada? PLoS One 7(10):e45153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50(5):1681–1690

    Article  Google Scholar 

  • Heslot N, Yang H-P, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52(1):146–160

    Article  Google Scholar 

  • Hickey LT, Dieters MJ, DeLacy IH et al (2010) Screening for grain dormancy in segregating generations of dormant × non-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica 172(2):83–195

    Article  Google Scholar 

  • Hickey LT, Wilkinson PM, Knight CR et al (2012) Rapid phenotyping for adult-plant resistance to stripe rust in wheat. Plant Breed 131(1):54–61

    Article  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 8(9):2369–2387

    Article  CAS  Google Scholar 

  • Hossain A, Teixeira da Silva JA, Lozovskaya MV, Zvolinsky VP (2012) High temperature combined with drought affect rainfed spring wheat and barley in south-eastern Russia: I. Phenology and growth. Saudi J Biol Sci 19(4):473–487

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168(4):541–549

    Article  CAS  Google Scholar 

  • Huang L, Brooks SA, Li W et al (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genet 164(2):655–664

    CAS  Google Scholar 

  • Huerta-Espino J, Singh RP, Germán S et al (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 164(2):655–664

    Google Scholar 

  • Iannucci A, Marone D, Russo MA et al (2017) Mapping QTL for root and shoot morphological traits in a durum wheat × T. dicoccum segregating population at seedling stage. Int J Genom 2017:6876393

    Google Scholar 

  • IGC, International Grains Council (2016) Grain market report 469 – 25 August 2016. Retrieved from www.igc.int Accessed on 1 Sept 2018

  • Infantino A, Santori A, Aureli G et al (2015) Occurrence of Fusarium langsethiae strains isolated from durum wheat in Italy. J Phytopathol 163(7–8):612–619

    Article  CAS  Google Scholar 

  • Izanloo A, Condon AG, Langridge P et al (2008) Different mechanisms of adaptation to cyclic water stress in two south Australian bread wheat cultivars. J Exp Bot 59(12):3327–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jankowicz-Cieslak J, Tai TH, Kumlehn J, Till BJ (2016) Biotechnologies for plant mutation breeding: protocols. Springer, Cham

    Google Scholar 

  • Jannink J, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9(2):166–177

    Article  CAS  Google Scholar 

  • Jaradat AA (2014) The value of wheat landraces. Emir J Food Agric 26(2):I

    Article  Google Scholar 

  • Jarquín D, Crossa J, Lacaze X et al (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127(3):595–607

    Article  PubMed  Google Scholar 

  • Jauhar PP, Peterson TS (2001) Hybrids between durum wheat and Thinopyrum junceiforme: prospects for breeding for scab resistance. Euphytica 118(2):127–136

    Article  Google Scholar 

  • Jeger MJ, Pautasso M (2008) Plant disease and global change – the importance of long-term data sets. New Phytol 177(1):8–11

    Article  PubMed  Google Scholar 

  • Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cordon Z, Whitback J (eds) The rhizosphere. Elsevier Inc, London, pp 73–100

    Chapter  Google Scholar 

  • Juliana P, Singh RP, Singh PK et al (2017) Comparison of models and whole-genome profiling approaches for genomic-enabled prediction of Septoria tritici blotch, Stagonospora nodorum blotch, and tan spot resistance in wheat. Plant Genome 10(2) https://doi.org/10.3835/plantgenome2016.08.0082

    Article  CAS  Google Scholar 

  • Kabbaj H, Sall AT, Al-Abdallat A et al (2017) Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front Plant Sci 8:1277

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan Z, Chopin J, Cai J et al (2018) Quantitative estimation of wheat phenotyping traits using ground and aerial imagery. Remote Sens 10(6):950

    Article  Google Scholar 

  • Kipp S, Mistele B, Baresel P, Schmidhalter U (2014) High-throughput phenotyping early plant vigour of winter wheat. Eur J Agron 52:271–278

    Article  Google Scholar 

  • Knutsen HK, Alexander J, Barregard L et al (2017) Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 15(9): e4718

    Google Scholar 

  • Koevoets IT, Venema JH, Elzenga JTM, Testerink C (2016) Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance. Front Plant Sci 7:1335

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolmer JA (2005) Tracking wheat rust on a continental scale. Curr Opin Plant Biol 8(4):441–449

    Article  PubMed  Google Scholar 

  • Krattinger S, Wicker T, Keller B (2009a) Map-based cloning of genes in Triticeae (wheat and barley). In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae. Springer, New York, pp 337–357

    Chapter  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W et al (2009b) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323(5919):1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bernier J, Verulkar S et al (2008) Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crop Res 107(3):221–231

    Article  Google Scholar 

  • Kumar U, Joshi AK, Kumari M et al (2010) Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the “Chirya 3” × “Sonalika” population. Euphytica 174(3):437–445

    Article  Google Scholar 

  • Kumar S, Röder MS, Singh RP et al (2016) Mapping of spot blotch disease resistance using NDVI as a substitute to visual observation in wheat (Triticum aestivum L.). Mol Breed 36(7):95

    Article  Google Scholar 

  • Kumudini S, Andrade FH, Boote KJ et al (2014) Predicting maize phenology: intercomparison of functions for developmental response to temperature. Agron J 106(6):2087–2097

    Article  Google Scholar 

  • Labbani Z, Richard N, De Buyser J, Picard E (2005) Plantes chlorophylliennes de blé dur obtenues par culture de microspores isolées: importance des prétraitements. Comp Rend Biol 328(8):713–723

    Article  Google Scholar 

  • Laidò G, Mangini G, Taranto F et al (2013) Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated by SSR, DArT and pedigree data. PLoS One 8(6):e67280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laidò G, Marone D, Russo MA et al (2014) Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PLoS One 9(4):e95211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laidò G, Panio G, Marone D et al (2015) Identification of new resistance loci to African stem rust race TTKSK in tetraploid wheats based on linkage and genome-wide association mapping. Front Plant Sci 6:1033

    Article  PubMed  PubMed Central  Google Scholar 

  • Läuchli A, Grattan S (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 1–32

    Google Scholar 

  • Laurie DA, Bennett MD (1986) Wheat × maize hybridization. Can J Genet Cytol 28(2):313–316

    Article  Google Scholar 

  • Le Gouis J (2011) Genetic improvement of nutrient use efficiency in wheat. In: Hawkesford MJ, Barraclough P (eds) The molecular and physiological basis of nutrient use efficiency in crops. John Wiley, New York, pp 121–138

    Chapter  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23(3):184–186

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Chao S, Anderson JA (2008) New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet 118(1):177–183

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Maccaferri M, Rynearson S et al (2017) Novel sources of stripe rust resistance identified by genome-wide association mapping in Ethiopian durum wheat (Triticum turgidum ssp. durum). Front Plant Sci 8:774

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Sibley A, Ivan Ortiz-Monasterio J (2012) Extreme heat effects on wheat senescence in India. Nat Clim Chang 2(3):186

    Article  Google Scholar 

  • Longin CFH, Sieber AN, Reif JC (2013) Combining frost tolerance, high grain yield and good pasta quality in durum wheat. Plant Breed 132:353–358

    Article  CAS  Google Scholar 

  • Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128(7):1297–1306

    Article  PubMed  Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS et al (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66:3477–3486

    Article  CAS  PubMed  Google Scholar 

  • Loss SP, Siddique KHM (1994) Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Adv Agron 52:229–276

    Article  CAS  Google Scholar 

  • Luterbacher J, Xoplaki E, Casty C et al (2006) Mediterranean climate variability over the last centuries: a review. Develop Earth Environ Sci 4:27–148

    Google Scholar 

  • Lynch JP, Wojciechowski T (2015) Opportunities and challenges in the subsoil: pathways to deeper rooted crops. J Exp Bot 66(8):2199–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S et al (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genet 178:489–511

    Article  Google Scholar 

  • Maccaferri M, Sanguineti MC, Demontis A et al (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Ricci A, Salvi S et al (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotech J 13:648–663

    Article  CAS  Google Scholar 

  • Maccaferri M, El-Feki W, Nazemi G et al (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67:1161–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, Himmelbach A, Mascher M, Bagnaresi P, Faccioli P, Cozzi P, Lauria M, Lazzari B, Stella A, Manconi A, Gnocchi M, Moscatelli M, Avni R, Deek J, Biyiklioglu S, Frascaroli E, Corneti S, Salvi S, Sonnante G, Desiderio F, Marè C, Crosatti C, Mica E, Özkan H, Kilian B, De Vita P, Marone D, Joukhadar R, Mazzucotelli E, Nigro D, Gadaleta A, Chao S, Faris JD, Melo ATO, Pumphrey M, Pecchioni N, Milanesi L, Wiebe K, Ens J, MacLachlan RP, Clarke JM, Sharpe AG, Koh CS, Liang KYH, Taylor GJ, Knox R, Budak H, Mastrangelo AM, Xu SS, Stein N, Hale I, Distelfeld A, Hayden MJ, Tuberosa R, Walkowiak S, Mayer KFX, Ceriotti A, Pozniak CJ, Cattivelli L (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51(5):885–895

    Article  CAS  PubMed  Google Scholar 

  • Madec S, Baret F, de Solan B et al (2017) High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates. Front Plant Sci 8:2002

    Article  PubMed  PubMed Central  Google Scholar 

  • Mago R, Brown-Guedira G, Dreisigacker S et al (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122(4):735–744

    Article  CAS  PubMed  Google Scholar 

  • Maier U (1996) Morphological studies of free-threshing wheat ears from a Neolithic site in southwest Germany, and the history of the naked wheats. Veg Hist Archaeobot 5(1–2):39–55

    Article  Google Scholar 

  • Marone D, Laidò G, Gadaleta A et al (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125:1619–1638

    Article  PubMed  PubMed Central  Google Scholar 

  • Marone D, Russo MA, Laidò G et al (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics 14(1):562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masuka B, Araus JL, Das B et al (2012) Phenotyping for abiotic stress tolerance in maize. J Integr Plant Biol 54(4):238–249

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka Y (2011) Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52(5):750–764

    Article  CAS  PubMed  Google Scholar 

  • Meisner C, Acevedo E, Flores D et al (1992) Wheat production and grower practices in the Yaqui Valley, Sonora, Mexico. Vol. 6. CIMMYT, Mexico

    Google Scholar 

  • Mengistu DK, Kiros AY, Pè ME (2015) Phenotypic diversity in Ethiopian durum wheat (Triticum turgidum var. durum) landraces. Crop J 3(3):190–199

    Article  Google Scholar 

  • Mereu V, Cesaraccio C, Dubvrosky M et al (2011) Impacts of climate change on durum wheat production in Sardinia (Italy). In: Geophysical research abstracts. EGU General Assembly, Göttingen, p 9242

    Google Scholar 

  • Messina CD, Sinclair TR, Hammer GL et al (2015) Limited-transpiration trait may increase maize drought tolerance in the US corn belt. Agron J 107(6):1978–1986

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genet 157(4):1819–1829

    CAS  Google Scholar 

  • Miedaner T, Sieber A, Dasaint H et al (2017) The potential of genomic-assisted breeding to improve fusarium head blight resistance in winter durum wheat. Plant Breed 136(5):610–619

    Article  CAS  Google Scholar 

  • Milec Z, Tomková L, Sumíková T, Pánková K (2012) A new multiplex PCR test for the determination of Vrn -B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed 30:317–323

    Article  CAS  Google Scholar 

  • Milus EA, Kristensen K, Hovmøller MS (2009) Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94

    Article  PubMed  Google Scholar 

  • Mohammadi R, Haghparast R, Sadeghzadeh B et al (2014) Adaptation patterns and yield stability of durum wheat landraces to highland cold rainfed areas of Iran. Crop Sci 54:944–954

    Article  Google Scholar 

  • Monneveux P, Jing R, Misra SC (2012) Phenotyping for drought adaptation in wheat using physiological traits. Front Physiol 3:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Montenegro JD, Golicz AA, Bayer PE et al (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Moses J, Jayas D, Alagusundaram K (2015) Climate change and its implications on stored food grains. Agric Res 4:21–30

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Murovec J, Bohanec B (2012) Haploids and doubled haploids in plant breeding. In: Plant breeding. InTech, Rijeka, pp 87–106

    Google Scholar 

  • Nichols V, Verhulst N, Cox R, Govaerts B (2015) Weed dynamics and conservation agriculture principles: a review. Field Crop Res 183:56–68

    Article  Google Scholar 

  • Nigro D, Fortunato S, Giove SL et al (2017) Allelic variants of glutamine synthetase and glutamate synthase genes in a collection of durum wheat and association with grain protein content. Diversity 9(4):52

    Article  CAS  Google Scholar 

  • Niu Z, Jiang A, Abu Hammad W et al (2014) Review of doubled haploid production in durum and common wheat through wheat × maize hybridization. Plant Breed 133(3):313–320

    Article  CAS  Google Scholar 

  • Nuttall JG, O’Leary GJ, Panozzo JF et al (2017) Models of grain quality in wheat – a review. Field Crop Res 202:136–145

    Article  Google Scholar 

  • O’Donoughue LS, Bennett MD (1994) Durum wheat haploid production using maize wide-crossing. Theor Appl Genet 89(5):559–566

    Article  PubMed  Google Scholar 

  • Olivares-Villegas JJ, Reynolds MP, McDonald GK (2007) Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Funct Plant Biol 34(3):189–203

    Article  PubMed  Google Scholar 

  • Oliveira HR, Campana MG, Jones H et al (2012) Tetraploid wheat landraces in the Mediterranean Basin: taxonomy, evolution and genetic diversity. PLoS One 7(5):e37063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz R, Trethowan R, Ferrara GO et al (2007) High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica 157(3):365–384

    Article  Google Scholar 

  • Ortiz R, Sayre KD, Govaerts B et al (2008) Climate change: Can wheat beat the heat? Agric Ecosys Envir 126:46–58

    Article  Google Scholar 

  • Özkan H, Willcox G, Graner A et al (2011) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58:11–53

    Article  Google Scholar 

  • Paliwal R, Röder MS, Kumar U et al (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125(3):561–575

    Article  PubMed  Google Scholar 

  • Panio G, Motzo R, Mastrangelo AM et al (2013) Molecular mapping of stomatal-conductance-related traits in durum wheat (Triticum turgidum ssp. durum). Ann Appl Biol 162:258–270

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: A review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Parry MAJ, Madgwick PJ, Bayon C et al (2009) Mutation discovery for crop improvement. J Exp Bot 60(10):2817–2825

    Article  CAS  PubMed  Google Scholar 

  • Pathirana R (2011) Plant mutation breeding in agriculture. Plant sciences reviews 6(032):107–126

    Google Scholar 

  • Pearce S, Vazquez-Gross H, Herin SY et al (2015) WheatExp: An RNA-seq expression database for polyploid wheat. BMC Plant Biol 15(1):299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peleg Z, Fahima T, Korol AB et al (2011) Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot 62:5051–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M et al (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341(6147):786–788

    Article  CAS  PubMed  Google Scholar 

  • Petrarulo M, Marone D, Ferragonio P et al (2015) Genetic analysis of root morphological traits in wheat. Mol Genet Genomics 290:785–806

    Article  CAS  PubMed  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL et al (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121(6):1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7(2):e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter JR, Gawith M (1999) Temperatures and the growth and development of wheat: a review. Eur J Agron 10(1):23–36

    Article  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc B 360(1463):2021–2035

    Article  Google Scholar 

  • Pozniak CJ, Hucl PJ (2004) Genetic analysis of imidazolinone resistance in mutation-derived lines of common wheat. Crop Sci 44(1):23–30

    Article  CAS  Google Scholar 

  • Pratap A, Sethi GS, Chaudhary HK (2006) Relative efficiency of anther culture and chromosome elimination techniques for haploid induction in triticale × wheat and triticale × triticale hybrids. Euphytica 150(3):339–345

    Article  CAS  Google Scholar 

  • Ragupathy R, Naeem HA, Reimer E et al (2008) Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor Appl Genet 116(2):283–296

    Article  CAS  PubMed  Google Scholar 

  • Ramesh K, Matloob A, Aslam F et al (2017) Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management. Front Plant Sci 8:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015) PolyMarker: a fast polyploid primer design pipeline. Bioinfor 31:2038–2039

    Article  CAS  Google Scholar 

  • Ramirez-Villegas J, Watson J, Challinor AJ (2015) Identifying traits for genotypic adaptation using crop models. J Exp Bot 66:3451–3462

    Article  CAS  PubMed  Google Scholar 

  • Randhawa HS, Asif M, Pozniak C et al (2013) Application of molecular markers to wheat breeding in Canada. Plant Breed 119:51–53

    Google Scholar 

  • Rapp M, Lein V, Lacoudre F et al (2018) Simultaneous improvement of grain yield and protein content in durum wheat by different phenotypic indices and genomic selection. Theor Appl Genet 131:1315–1329

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Wen W, Gao F et al (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129(10):1843–1860

    Article  CAS  PubMed  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND et al (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293

    Article  PubMed  CAS  Google Scholar 

  • Rebetzke GJ, Richards RA (1999) Genetic improvement of early vigour in wheat. Aust J Agric Res 50(3):291–302

    Article  Google Scholar 

  • Rebetzke GJ, Richards RA, Fischer VM, Mickelson BJ (1999) Breeding long coleoptile, reduced height wheats. Euphytica 106:159

    Article  Google Scholar 

  • Ren J, Sun D, Chen L et al (2013) Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. Int J Mol Sci 14:7061–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agric Sci 144(1):3–17

    Article  Google Scholar 

  • Reynolds MP, van Ginkel M, Ribaut JM (2000) Avenues for genetic modification of radiation use efficiency in wheat. J Exp Bot 51:459–473

    Article  CAS  PubMed  Google Scholar 

  • Reynolds MP, Pellegrineschi A, Skovmand B (2005) Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol 146(1):39–49

    Article  Google Scholar 

  • Reynolds M, Foulkes J, Furbank R et al (2012) Achieving yield gains in wheat. Plant Cell Environ 35(10):1799–1823

    Article  PubMed  Google Scholar 

  • Rezaei EE, Siebert S, Hüging H, Ewert F (2018) Climate change effect on wheat phenology depends on cultivar change. Sci Rep 8:4891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rharrabti Y, García Del Moral LF, Villegas D, Royo C (2003) Durum wheat quality in Mediterranean environments III. Stability and comparative methods in analysing G × E interaction. Field Crop Res 80(2):141–146

    Article  Google Scholar 

  • Riaz A, Periyannan S, Aitken E, Hickey L (2016) A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Meth 12:17

    Article  CAS  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB et al (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Chang Hum Heal 2(2):90–104

    Article  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Nat Acad Sci 104(1):8641–8648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royo C, Nazco R, Villegas D (2014) The climate of the zone of origin of Mediterranean durum wheat (Triticum durum Desf.) landraces affects their agronomic performance. Genet Resour Crop Evol 61:1345

    Article  Google Scholar 

  • Sahri A, Chentoufi L, Arbaoui M et al (2014) Towards a comprehensive characterization of durum wheat landraces in Moroccan traditional agrosystems: analysing genetic diversity in the light of geography, farmers’ taxonomy and tetraploid wheat domestication history. BMC Evol Biol 14:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Saintenac C, Zhang W, Salcedo A et al (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341(6147):783–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salamini F, Özkan H, Brandolini A et al (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV et al (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotech J 16(4):902–910

    Article  CAS  Google Scholar 

  • Sanna G, Giunta F, Motzo R et al (2014) Genetic variation for the duration of pre-anthesis development in durum wheat and its interaction with vernalization treatment and photoperiod. J Exp Bot 65:3177–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarascia Mugnozza GT (2005) The contribution of Italian wheat geneticists: from Nazareno Strampelli to Francesco D’Amato. In: Proceedings of the international congress “In the wake of double helix from green revolution to gene revolution”, pp 53–75

    Google Scholar 

  • Scherm B, Balmas V, Spanu F et al (2013) Fusarium culmorum: causal agent of foot and root rot and head blight on wheat. Mol Plant Pathol 4(4):323–341

    Article  CAS  Google Scholar 

  • Semenov MA, Stratonovitch P, Alghabari F, Gooding MJ (2014) Adapting wheat in Europe for climate change. J Cereal Sci 59:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sestili F, Botticella E, Bedo Z et al (2010) Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breed 25(1):145–154

    Article  CAS  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9(10):2395

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y, Kurishbayev A, Jatayev S et al (2017) Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Sci 8:1950

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi G, Zhang Z, Friesen TL et al (2016) The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci Adv 2(10):e1600822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simmonds J, Scott P, Brinton J et al (2016) A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Gen 129(6):1099–1112

    Article  CAS  Google Scholar 

  • Simonetti MC, Bellomo MP, Laghetti G et al (1999) Quantitative trait loci influencing free–threshing habit in tetraploid wheats. Genet Resour Crop Evol 46:267–271

    Article  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN et al (2006) Molecular characterization of the major wheat domestication gene Q. Genet 172:547–555

    Article  CAS  Google Scholar 

  • Singh S, Sethi G, Chaudhary H (2004) Different responsiveness of winter and spring wheat genotypes to maize-mediated production of haploids. Cereal Res Comm 32:201–207

    CAS  Google Scholar 

  • Singh DP, Sharma AK, Kumar P et al (2008) Management of leaf blight complex of wheat (Triticum aestivum) caused by Bipolaris sorokiniana and Alternaria triticina in different agroclimatic zones using an integrated approach. Indian J Agric Sci 78:513–517

    CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J et al (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Subash N, Gangwar B et al (2015a) Assessing economic impacts of climate change and adaptation in Indo-Gangetic basin. Procedia Environ Sci 29:229–230

    Article  Google Scholar 

  • Singh RP, Hodson DP, Jin Y et al (2015b) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105(7):872–884

    Article  PubMed  Google Scholar 

  • Sissons MJ (2008) Role of durum wheat composition on the quality of pasta and bread. FoodReview 2(2):75–90

    Google Scholar 

  • Slade AJ, McGuire C, Loeffler D et al (2012) Development of high amylose wheat through TILLING. BMC Plant Biol 12(69):1–17

    Google Scholar 

  • Smiley RW, Gourlie JA, Easley SA et al (2005) Crop damage estimates for crown rot of wheat and barley in the Pacific northwest. Plant Dis 89(6):595–604

    Article  PubMed  Google Scholar 

  • Song J, Carver BF, Powers C et al (2017) Practical application of genomic selection in a doubled–haploid winter wheat breeding program. Mol Breed 37:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Soriano JM, Villegas D, Aranzana MJ et al (2016) Genetic structure of modern durum wheat cultivars and Mediterranean landraces matches with their agronomic performance. PLoS One 1(8):e0160983

    Article  CAS  Google Scholar 

  • Soriano JM, Villegas D, Sorrells ME, Royo C (2018) Durum wheat landraces from east and west regions of the Mediterranean Basin are genetically distinct for yield components and phenology. Front Plant Sci 9:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Spindel JE, Begum H, Akdemir D et al (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Hered 116:395–408

    Article  CAS  Google Scholar 

  • Steuernagel B, Periyannan SK, Hernández-Pinzón I et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotech 34:652–655

    Article  CAS  Google Scholar 

  • Sun J, Rutkoski JE, Poland JA et al (2017) Multitrait, random regression, or simple repeatability model in high-throughput phenotyping data improve genomic prediction for wheat grain yield. Plant Genome 10(2). https://doi.org/10.3835/plantgenome2016.11.0111

    Article  Google Scholar 

  • Swamy BPM, Sarla N (2011) Meta-analysis of yield QTLs derived from inter-specific crosses of rice reveal consensus regions and candidate genes. Plant Mol Biol Report 29:663

    Article  Google Scholar 

  • Sysoeva M, Markovskaya E, Shibaeva T (2010) Plants under continuous light: a review. Plant Stress 4:1–13

    Google Scholar 

  • Szechy M, Dubas E, Got G (2009) Progress in doubled haploid technology. Adv Haploid Prod High Plants 1:33

    Google Scholar 

  • Tadesse W, Inagaki M, Tawkaz S et al (2012) Recent advances and application of doubled haploids in wheat breeding. Afr J Biotech 11(89):15484–15492

    Article  Google Scholar 

  • Tanno K, Willcox G (2006) How fast was wild wheat domesticated? Science 311:1886

    Article  CAS  PubMed  Google Scholar 

  • Tao F, Rötter RP, Palosuo T et al (2016) Designing future barley ideotypes using a crop model ensemble. Eur J Agron 82:144–162

    Article  Google Scholar 

  • Taranto F, Nicolia A, Pavan S, De Vita P, D’Agostino N (2018) Biotechnological and Digital Revolution for Climate-Smart Plant Breeding. Agronomy 8(12):277

    Article  Google Scholar 

  • Tattaris M, Reynolds MP, Chapman SC (2016) A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front Plant Sci 7:1131

    Article  PubMed  PubMed Central  Google Scholar 

  • Taub DR, Wang X (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol 50(11):1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Thuillet AC, Bataillon T, Poirier S et al (2005) Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genet 169:1589–1599

    Article  CAS  Google Scholar 

  • Trnka M, Rötter RP, Ruiz-Ramos M et al (2014) Adverse weather conditions for European wheat production will become more frequent with climate change. Nat Clim Chang 4:637–643

    Article  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T et al (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314(5803):1298–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Eeuwijk F, Bustos-Korts D, Millet EJ et al (2018) Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Sci. in press. Available online. https://doi.org/10.1016/j.plantsci.2018.06.018

    Article  CAS  PubMed  Google Scholar 

  • van Slageren M (1994) Wild wheats: a monograph of Aegilops L. and Amblypyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University, Wageningen

    Google Scholar 

  • Varanasi A, Prasad PVV, Jugulam M (2016) Impact of climate change factors on weeds and herbicide efficacy. Adv Agron 135:107–146

    Article  Google Scholar 

  • Verrillo F, Badeck FW, Terzi V et al (2017) Elevated field atmospheric CO2 concentrations affect the characteristics of winter wheat (cv. Bologna) grains. Crop Past Sci 68:713–725

    Article  CAS  Google Scholar 

  • Waalwijk C, Kastelein P, De Vries I et al (2003) Major changes in Fusarium spp. in wheat in the Netherlands. Eur J Plant Pathol 109:743–754

    Article  CAS  Google Scholar 

  • Wang H, Inukai Y, Yamauchi A (2006) Root development and nutrient uptake. Crit Rev Plant Sci 25:279–301

    Article  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotech J 12:787–796

    Article  CAS  Google Scholar 

  • Watson A, Ghosh S, Williams MJ et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Watt M, Kirkegaard JA, Rebetzke GJ (2005) A wheat genotype developed for rapid leaf growth copes well with the physical and biological constraints of unploughed soil. Func Plant Biol 178:135–146

    Google Scholar 

  • Wieser H, Manderscheid R, Erbs M, Weigel HJ (2008) Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grain. J Agric Food Chem 56(15):6531–6535

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118(2):285–294

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenland AJ, Powell W, Mackay IJ (2013) Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theor Appl Genet 126(9):2233–2243

    Article  CAS  PubMed  Google Scholar 

  • Woiwod IP (1997) Detecting the effects of climate change on Lepidoptera. J Insect Conserv 1(3):149–158

    Article  Google Scholar 

  • Xie Q, Mayes S, Sparkes DL (2016) Optimizing tiller production and survival for grain yield improvement in a bread wheat × spelt mapping population. Ann Bot 17(1):51–66

    Article  CAS  Google Scholar 

  • Xu Y, Li P, Zou C et al (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68(11):2641–2666

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G et al (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Nat Acad Sci 100(10):6263–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Loukoianov A, Blechl A et al (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(5664):1640–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan L, Fu D, Li C et al (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Nat Acad Sci 103(51):19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan G, Liu H, Wang H et al (2017) Accelerated generation of selfed pure line plants for gene identification and crop breeding. Front Plant Sci 8:1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282

    Article  CAS  Google Scholar 

  • Zangaro W, De Assis RL, Rostirola LV et al (2008) Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil. Mycorrhiza 19(1):37–45

    Article  PubMed  Google Scholar 

  • Zanke C, Ling J, Plieske J et al (2014) Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci 5:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang LY, Liu DC, Guo XL et al (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52(11):996–1007

    Article  PubMed  Google Scholar 

  • Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Wang HB, Chen GD et al (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191:311–316

    Article  Google Scholar 

  • Zhou B, Elazab A, Bort J et al (2015) Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput Electron Agric 116:20–29

    Article  Google Scholar 

  • Ziska LH, George K (2004) Rising carbon dioxide and invasive, noxious plants: potential threats and consequences. World Resour Rev 16(4):427–447

    Google Scholar 

  • Zurek G, Pronczuk S, Zou GH et al (2015) CircNet: a database of circular RNAs derived from transcriptome sequencing data. Theor Appl Genet 16:299–310

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Italian Ministry of Economic Development (MISE) for funding the project HORIZON 2020 PON I&C 2014–2020, INNOGRANO N. F/050393/00/X32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale De Vita .

Editor information

Editors and Affiliations

Appendices

Appendices

13.1.1 Appendix I: Research Institutes Relevant to Durum Wheat

Institute

Specialization and research activities

Contact information and website

CREA Research Centre for Cereal and Industrial Crops

Genetics and breeding of durum wheat

Pasquale de Vita

SS 673 km 25 + 200–71,122 Foggia, Italy

pasquale.devita@crea.gov.it

https://www.crea.gov.it/it

Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bologna, Italy

Genetics and genomics in durum wheat

Roberto Tuberosa

Viale Fanin 44, Bologna, Italy

roberto.tuberosa@unibo.it

https://www.unibo.it

Plant Sciences, Crop Development Centre, University of Saskatchewan, Canada

Genetics and genomics in durum wheat

Curtis Pozniak

Curtis.pozniak@usas.ca

Crop Development Centre, University of Saskatchewan

2E64 – Agriculture Building

51 Campus Drive, Saskatoon, SK, Canada

https://agbio.usask.ca/departments/plant-sciences.php

International Maize and Wheat Improvement Center (CIMMYT), Mexico

Head of durum wheat and triticale breeding at CIMMYT

Karim Ammar

Km. 45, Carretera, México-Veracruz, El Batán,

Texcoco CP 56237, Edo. de México, Mexico

k.ammar@CGIAR.ORG

www.cimmyt.org

International Center for Agricultural Research in the Dry Areas (ICARDA), Morocco

Genetics and breeding of durum wheat

Filippo Bassi

F.Bassi@cgiar.org

Dalia Building 2nd Floor, Bashir El Kassar Street, Verdun, Beirut, Lebanon 1108-2010

www.icarda.org

Swift Current Research and Development Centre

Agriculture and Agri-Food Canada

Genetic, genomic and breeding of durum wheat

Ron Knox

1 Airport Road, PO Box 1030, Swift Current, Saskatchewan S9H 3X2

ron.knox@agr.gc.ca

http://www.agr.gc.ca

University of New England, Australia

Cereal chemistry of durum wheat and wheat breeding for quality

Mike Sissons

Tamworth Agricultural Institute, 4 Marsden Park Road, Calala, NSW 2340, Australia.

mike.sissons@dpi.nsw.gov.au

https://www.dpi.nsw.gov.au

INTA, Argentina

Durum wheat breeding

Adelina Larsen

INTA Barrow Ruta Nac. N° 3, Km 487 – (7500) – Tres Arroyos, Bs. As, Argentina

larsen.adelina@inta.gob.ar

https://inta.gob.ar/barrow/sobre-724000

IRTA Spain

Genetics and breeding of durum wheat

Conxita Royo

IRTA, Avda Rovira Roure, 191. 25198, Lleida, Spain

conxita.royo@irta.cat

www.irta.es

University of Hohenheim State Plant Breeding

Head of Wheat Group

Friedrich Longin

Institute (720), Fruwirthstraße 21- 70599 Stuttgart, Germany

French National Institute for Agricultural Research

Amélioration Génétique et Adaptation des Plantes méditerranéennes et Tropicales (AGAP)

Genetic and breeding of durum wheat

Pierre Roumet

UMR AGAP, Campus Supagro

2 Place Viala. 34,060 Montpellier Cedex 2, Pierre.Roumet@supagro.inra.fr

13.1.2 Appendix II: Durum Wheat Genetic Resources

Cultivar

Important traits

Cultivation location

Antalis

Yield potential

Italy

Iride

Yield potential

Italy

Claudio

Yield potential

Italy/France

Svevo

Yield potential and grain quality

Italy

Miradoux

Yield potential and grain quality, diseases resistance

France/Germany

Anvergur

Yield potential and grain quality, diseases resistance

France

Tempodur

Yield potential, diseases resistance

Germany and Austria

AC Avonlea

Grain quality

Canada

AC Navigator

Grain quality

Canada

Strongfield

Grain quality

Canada

Commander

Grain quality

Canada

Kamilaroi

Yield stability and grain quality

Australia

Yallaroi

Yield stability and grain quality

Australia

Wollaroi

Yield stability and grain quality

Australia

Sredetza

Resistance to lodging and tolerance to low temperature

Bulgaria

Castelporzianoa

Resistance to lodging and high yield

Italy

Grandura

Short straw, resistance to lodging, high yield,

Austria

Attilaa

Resistance to lodging, high yellow pigment and good quality

Austria

Cargiduroxa

Semi-dwarfness and resistance to lodging

France

Antoñínb

Resistance to imazamox herbicide

Spain

  1. aMutant variety
  2. bClearfield® variety

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Vita, P., Taranto, F. (2019). Durum Wheat (Triticum turgidum ssp. durum) Breeding to Meet the Challenge of Climate Change. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_13

Download citation

Publish with us

Policies and ethics